A Visual Sensor-based Approach for Robotic

Pick-and-Place Operations

Taha Momayiz®, Andrew Barth?
University of Cincinnati, Cincinnati, OH 45219, United States

This paper introduces an autonomous grasping system that leverages depth sensing and
advanced machine learning to enable real-time object detection and manipulation. By
combining the Intel RealSense D435i with a custom-trained YOLOv11 model, integrated
within a ROS 2 framework running on Ubuntu 22.04, the system accurately maps object
locations and commands an Interbotix X-Series ViperX-300 robot arm to perform precise
pick-and-place tasks. The innovation centers on a custom coordinate transformation pipeline
that converts 3D object positions from the camera’s perspective to the robot’s base frame,
significantly improving grasp success rates and reducing execution times. Detailed
experimental procedures demonstrate a 100% grasp success rate and highlight the potential
of further enhancements with additional camera angles and improved training datasets. For
those interested in the code and further details, the complete implementation is available on
our GitHub repository at https://github.com/YumTaha/robot-vision.

I. Nomenclature

D435i = RealSense depth camera model

YOLOv11l = You Only Look Once version 11 object detection model

ROS 2 = Robot Operating System version 2

AprilTag = Visual fiducial system used for object detection, localization, and pose estimation in robotics
RViz = 3D visualization tool in ROS used for displaying sensor data, robot models, and simulation

environments

ViperXx-300

Xcam, Ycam, Zcam

Interbotix X-Series robot arm model
Coordinates of an object’s center as detected in the camera frame

Ten The 4x4 homogeneous transformation matrix from the camera reference frame to the robot’s base
frame

Cunaligned = The intermediate coordinate vector which accounts for sensor offsets and axis reordering

Caligned = The transformed coordinate vector in the robot base frame

mAP = The average of the Average Precision metric across all classes in a model

Precision = Measures the proportion of correct predictions made by the model

Recall = Measures the percentage of relevant objects correctly identified by the model

I1. Introduction

The need for dynamic, reliable grasping systems in unstructured environments has become increasingly prominent
with the rise of robotics in industrial automation, assistive technology, and space exploration. Traditional robotic
grasping methods often rely on predefined object locations, limiting their adaptability when dealing with varying
object positions and unexpected movements. Recent advancements in deep learning and real-time sensor processing
have opened new avenues for autonomous manipulation by enabling robust object detection and localization under
diverse conditions.

This research introduces an autonomous grasping system that integrates the high-resolution depth sensing
capabilities of the RealSense D435i with the rapid object detection of a custom-trained YOLOv11 model. The system
is built around the Interbotix X-Series ViperX-300 robotic arm, which executes precise grasping maneuvers based on

'Undergraduate Student, Department of Aerospace Engineering and Engineering Mechanics, AIAA Member
2 Assistant Professor, Department of Aerospace Engineering and Engineering Mechanics, AIAA Senior Member

https://github.com/YumTaha/robot-vision

continuously updated perception data. A critical element of the system is a robust coordinate transformation pipeline
that addresses the well-known hand-eye calibration problem by converting detections from the camera frame to the
robot’s base frame—a step essential for accurate grasp planning.

In early prototypes, the use of ROS1 in combination with a conventional depth camera proved inadequate, as it
struggled to maintain a reliable live feed, execute timely object detection, and facilitate precise grasping
simultaneously. These limitations underscored the need for a more robust system, which led to the adoption of ROS
2 and the integration of YOLO, a powerful machine learning algorithm capable of tracking and locating objects
dynamically. Moreover, initial experiments conducted on Ubuntu 18.04 and 20.04 encountered multiple compatibility
and performance issues, prompting a migration to Ubuntu 22.04. This upgrade provided a more stable and efficient
environment, enabling the seamless integration of sensor data, machine learning processes, and robotic control.

In developing this system, an iterative design process was employed, drawing on open-source frameworks and
real-time communication via ROS 2. The approach emphasizes modularity and flexibility, allowing the integration of
sensor data and control commands to be refined over successive testing phases. Like other projects in our lab that
leverage advanced manufacturing and pneumatic simulation techniques for CubeSat testing, this project illustrates
how cost-effective and scalable technologies can be harnessed to solve complex robotics challenges. By addressing
key issues such as sensor calibration, coordinate transformation, and dynamic grasp planning, this work seeks to
advance the state of the art in autonomous robotic manipulation.

I11. Methods

The experimental setup was meticulously planned to ensure seamless integration of both hardware and software
components, laying the foundation for reliable and accurate grasping operations. The robotic arm, an Interbotix X-
Series ViperX-300, was positioned directly in front of the camera to maximize its visibility within the camera’s field
of view, thereby ensuring that the arm'’s entire operational workspace was consistently captured during experiments.
This positioning was crucial for minimizing blind spots and maximizing the effectiveness of subsequent spatial
analyses.

To achieve precise mapping between the robotic arm and the camera, we implemented an AprilTag module—a
robust and efficient visual fiducial system. The AprilTag system utilizes a small, high-contrast barcode affixed to the
end effector of the robotic arm. This barcode is easily recognized by the camera, even under varying lighting
conditions, and serves as a reference point for calibration. When the camera captures the scene, it identifies the
AprilTag and computes its position relative to the camera frame. This process facilitates the extraction of critical
spatial information required to derive the transformation matrix that accurately maps the camera’s coordinate system
to that of the robotic arm.

In essence, the AprilTag module enables a dynamic and reliable calibration process. By scanning the barcode on
the end effector, the system continuously updates the positional relationship between the robotic arm and the camera.
This ensures that even if there are slight shifts or changes in the setup over time, the transformation matrix remains
accurate, thereby maintaining precise alignment between the sensed data and the robotic motion commands. The
resulting transformation matrix is integral to the entire grasping process, as it directly influences the robot’s ability to
accurately interpret object locations and execute effective pick-and-place maneuvers.

Figure 2: Interbotix ViperX-300 robotic arm
The Intel RealSense D435i depth camera was configured to optimize its depth module, ensuring high-quality 3D
data acquisition essential for precise robotic operations. In the Robot Operating System (ROS) environment, this
camera publishes data to specific topics, notably /camera/color/image_raw and /camera/depth/color/points.

/camera/color/image_raw: This topic publishes unprocessed color image data captured by the camera's RGB
sensor. In our project, we subscribe to this topic to obtain real-time color imagery used directly for object detection
via YOLOv11. We configured the camera to ensure the image quality was consistent and met the requirements for
accurate recognition.

/camera/depth/color/points: This topic provides a PointCloud2 message containing spatial data points that
represent the 3D structure of the observed environment. In our implementation, we used the depth data from this topic
to calculate the precise 3D coordinates of objects within the scene. We carefully adjusted camera settings, including
resolution and frame rate, to optimize the frequency and accuracy of the point cloud data. Furthermore, we calibrated

the D435i to ensure that the depth data was properly aligned with the color imagery, a crucial step for our coordinate
transformation pipeline that maps detections from the camera frame to the robot’s base frame.

By effectively managing these topics and ensuring their proper configuration, the D435i can serve as a robust sensor
for depth mapping and 3D visualization in robotic systems.

~ @ Global Options

Background Color W 48; 48; 48
Frame Rate 30
= v Global Status: Ok
v’ Fixed Frame OK
' @ Grid v
+ & Image
» v Status: Ok
» Topic Jyolo/dbg_image
* %° MarkerArray v
+ v Status: Ok
» Topic Jyolo/dgb_bb_markers
» Namespaces
+ ¥° MarkerArray v

Fixed Frame
Frame into which all data Is transformed before being displayed.

Add

& Image ol

Figure 3: Unaligned 3D Bounding Boxes in RViz space

Initially, the system faced challenges due to the misalignment between the RGB and depth streams. The camera was
then configured to apply pre-calibrated transformations to the depth stream, aligning it to the RGB image frame.
These adjustments ensured that the depth and color streams were aligned, allowing RViz to accurately overlay YOLO-
generated bounding boxes on the 3D mapped objects.

The YOLOv11 model was trained using a custom dataset. Roboflow, a web application used for image labeling,
was used to create the data set. Each target object was accurately marked with a bounding box by hand in a dataset
of 288 images captured from various angles and positions. This diversity in the dataset was crucial, as it provided the
model with a wide range of perspectives and environmental conditions, thereby enhancing its ability to generalize to
real-world scenarios.

Once the dataset was fully annotated, we utilized Google Colab for the training phase. Google Colab offers a
cloud-based environment equipped with high-performance GPUs, which significantly accelerates the training process
compared to a standard local setup. This is particularly important when dealing with deep learning models like
YOLOvV11 that demand substantial computational resources, especially as the size of the dataset increases. Although

it is possible to train

the model locally, our experience has shown that using a robust GPU, such as those available on

Google Colab, leads to more efficient processing and substantially reduces training time. This approach not only
facilitates faster experimentation but also ensures that the model reaches an optimal level of performance in detecting
and localizing objects in dynamic environments.

- mAP mAP@50:95
0 50 100 150 200 250 300
Epochs
Box Loss Class Loss Object Loss
. o Loss @ Cioss Loss @ Obiect Loss
40 0.90
35 0.88
89 0386
25
0.84
20 -
15 0.82
1.0 0.80
05 0.78
0 ! 0.76
0 100 200 300 0 100 200 300 0 100 200 300

Figure 5: mAP, Box Loss, Class Loss, Object Loss graphs
mAP ® Precision ® Recall®
99.5% 99.8% 100.0%

Figure 6: Training mAP, Precision and Recall

trainbox_loss train/seg_loss train/cls_loss train/dfi_loss metrics/precision(B) metrics/recall(B) metrics/precision(M) metrics/recall(M)

175 [eaults a Loo 1.0 1.0 | opegemmy L0 = 1.0 { oy
107 1.50 smooth os 09 08 0.9
3 0.95 -
0.84 125 s 08 s 0.8
o6 1.00 24| 507 07 o7
1 1 0.4 0.4
075 0.85 0.6 0.6
0.4 1 g
0.50 0.80 0.2 05 0.2 05
021, ‘ ‘ . ‘ oo I 01, ool) esd] ‘
o 200 o 200 0 200 o 200 o 200] 200] 200 o 200
val/box_loss valiseg_loss valfcls_loss valfdfl_loss metrics/mAPS0(B) metrics/mAP50-95(B) metrics/mAP50{M) metrics/mAP50-95(M)
0.8 4 § 0.900 1.0 10 Wﬂ 1.0
.74 1.0 4 08
0.7 3] 0.875 0 08 08 r I
1
0.6 4 0.850
08 | 0.6 06 0.6 o6
0351 2 2 0.825 4
| 0.4 0.4 0.4 0.4
0.4 06 N 0.8004
] 0.2 02 0.2 0.2
0.3 04 0.775 1
\ : : : o+ - ; - - : : : : :
0 200 0 200 0 200 0 200 0 200 0 200 0 200 0 200

Figure 7: Training Graphs

Visualization was accomplished using RViz, the 3D visualization platform in ROS. The integration of the robotic
arm’s own RViz model with the camera’s data streams allowed for real-time monitoring of the system’s performance.

Through RViz, we could observe that the depth and color data from the camera were well-aligned, allowing the
overlay of bounding boxes on the three-dimensional representations of objects in the scene. This real-time
visualization was crucial for verifying the precision of our detection and mapping processes.

A central component of our system is the coordinate transformation pipeline, which is responsible for converting
the detected object positions from the camera’s coordinate frame into the robotic arm’s base frame. To achieve this,
we use a 4x4 homogeneous transformation matrix that encapsulates the spatial relationship between the camera and
the robot. This matrix is derived using information from an AprilTag module, which determines the relative pose
between the camera base and the robot’s arm.

In practice, once an object is detected, its position is initially expressed in the camera’s frame. We first compute an
intermediate coordinate vector by applying a predetermined offset and rearranging the components to account for
sensor orientation. Specifically, we adjust the y-coordinate by subtracting it from a small constant value, invert the z-
coordinate, and maintain the x-coordinate appended with a homogeneous coordinate of 1. This forms our unaligned
coordinate vector.

0.015 — Yeam

_ —Z
Cunaligned - x cam
cam

1
The next step involves multiplying this unaligned vector by the transformation matrix obtained from the AprilTag

calibration. This multiplication effectively rotates, translates, and scales the vector, yielding the aligned coordinate
vector. The aligned vector accurately represents the object’s position in the robot’s coordinate system, which is
essential for guiding the robotic arm to the correct location for grasping.

Catignea = Tep- Cunatigned
This process not only ensures precise mapping of the object’s location but also guarantees that subsequent grasp
planning and execution are based on accurate spatial data.

iy vy e
$°® MarkerArray v

» v Status: Ok

» Topic /yolo/dgb_bb_markers
» Namespaces

$° MarkerArray v

% PointCloud2 v
» v/ Status: Ok
Topic /camera/camera/depth/color/points
Selectable v
style Flat Squares
Size (m) 0.01
Alpha 1
Decay Time [
Position Transformer XYz
Color Transformer RGB8
Topic
sensor_msgs/msg/PointCloud2 topic to subscribe to.
Add
O Image (0]

urple 96%
blue 94% IRkl v ve

red 96%
ellow 98%
green 95%

Figure 9: Aligned 2D bounding boxes

IVV. Experimental Procedure and Results

Experiments were conducted in a controlled workbench environment, where objects were randomly placed within
the reachable workspace of the robotic arm. During the calibration phase, the system verified the spatial alignment
between the camera and the robotic arm using the AprilTag module. This ensured that the transformation matrix was
accurately computed, thereby allowing the system to precisely locate objects in three-dimensional space. In testing,
the grasp success rate was consistently 100%. The system reliably mapped object positions and executed the
grasping maneuver with pinpoint precision. Execution times were notably fast due to the efficient integration of the
detection and transformation processes. While the detection module achieved a 70% accuracy in terms of bounding
box precision—occasionally providing less-than-ideal outlines of objects—this did not hinder the overall grasping
performance. The system was able to identify the object's location accurately even when the bounding boxes were

slightly imprecise. It is anticipated that incorporating additional cameras to provide multiple viewpoints would
further enhance the detection accuracy and the quality of the bounding boxes.

Throughout the development process, several challenges were encountered. One significant hurdle was managing
dependencies among ROS Humble, Ubuntu 22.04, YOLOvV11, the Interbotix package, and the RealSense package.
Resolving these dependency conflicts was essential to ensuring smooth operation. Another challenge was addressing
the misalignment between the RGB and depth streams of the D435i camera, which was resolved through specific
configuration adjustments. Lastly, transforming the coordinate data from the camera frame to the robot’s base frame
required careful calibration and validation to ensure accuracy.

The overall system performance, characterized by rapid detection, mapping, and execution, demonstrates the
potential of our integrated approach for dynamic object manipulation.

V. Conclusion and Future Work

This study presents a robust and efficient autonomous grasping system that leverages state-of-the-art depth
sensing and deep learning for real-time object manipulation. By transitioning from ROS1 to ROS2 and upgrading to
Ubuntu 22.04, we overcame previous limitations related to live feedback and object detection. The use of YOLOv11
for object detection, combined with a custom coordinate transformation pipeline, enabled the robotic arm to achieve
a 99% grasp success rate in controlled experiments.

Future improvements will focus on incorporating additional cameras to capture multiple perspectives, thereby
enhancing the precision of object detection and bounding box accuracy. Furthermore, expanding the YOLOv11
training dataset is expected to improve detection performance. Additional sensor modalities, such as tactile
feedback, may also be integrated to refine the grasp planning and execution process. These enhancements aim to
extend the applicability of the system to more complex and unstructured environments.

V1. Discussion

The integration of depth sensing with deep learning-based object detection has proven effective in enhancing robotic
grasping capabilities. The custom coordinate transformation pipeline is critical in mapping object positions accurately
from the camera frame to the robot base frame. This real-time transformation, combined with dynamic grasp planning,
has led to significant performance improvements. Challenges remain in handling occlusions and ensuring robustness
in dynamic environments. Future work will explore the use of segmentation masks to improve edge detection and
adapt the grasp planning algorithm to multi-object scenarios. Comparisons with traditional fixed-coordinate methods
demonstrate the advantages of our approach, though further experiments with larger datasets are necessary.

VII. Appendix
288 Total Images

Train@ Valid 24 Test 12

4

Figure 10: Annotated Dataset

Validation Set Test Set Training Graphs

Average Precision by Class

all 100

blue 100
green 100
orange 100
purple 100
red 100
yellow 100

Figure 11: Average Precision by class

V1. Acknowledgments

The author wishes to express their deepest gratitude to Andrew Barth for his invaluable contributions and
lasting inspiration. His passion for robotics continues to influence our work profoundly. We also extend
sincere thanks to Dr. Ou Ma for providing the funding that made this research possible.

IX. References

Trossen Robotics, "Interbotix ViperX 300 Robot Arm Specifications,” Interbotix Documentation.

Ultralytics, "YOLOv11 Model Documentation,"” Ultralytics Docs.

3. Gonzélez, M., "yolo_ros: Ultralytics YOLOVS8, YOLOV9, YOLOv10, YOLOv11, YOLOv12 for
ROS 2," GitHub repository.

4. Roboflow, "Computer Vision Tools for Developers and Enterprises,” Roboflow.

Google, "Google Colab: Collaborative Python Notebooks," Google Colab.

N =

o

