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O R I G I N A L  R E S E A R C H
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Introduction: Alveolar Capillary Dysplasia with Misaligned Pulmonary Veins (ACDMPV) is a fatal congenital disease resulting 
from a pulmonary vascular endothelial deficiency of FOXF1, producing abnormal morphogenesis of alveolar capillaries, malposi-
tioned pulmonary veins and disordered development of lung lobes. Affected neonates suffer from cyanosis, severe breathing 
insufficiency, pulmonary hypertension, and death typically within days to weeks after birth. Currently, no treatment exists for 
ACDMPV, although recent murine research in the Kalinichenko lab demonstrates nanoparticle delivery improves survival and 
reconstitutes normal alveolar-capillary architecture. The aim of the present study is to investigate the safety of intravenous adminis-
tration of FOXF1-expressing PEI-PEG nanoparticles (npFOXF1), our pioneering treatment for ACDMPV.
Methods: npFOXF1 was constructed, validated, and subsequently administered in a single dose to postnatal day 14 (P14) mice via retro- 
orbital injection. Biochemical, serologic, and histologic safety were monitored at postnatal day 16 (P16) and postnatal day 21 (P21).
Results: With treatment we observed no lethality, and the general condition of mice revealed no obvious abnormalities. Serum 
chemistry, whole blood, and histologic toxicity was assayed on P16 and P21 and revealed no abnormality.
Discussion: In conclusion, npFOXF1 has a very good safety profile and combined with preceding studies showing therapeutic 
efficacy, npFOXF1 can be considered as a good candidate therapy for ACDMPV in human neonates.
Keywords: nanoparticle, FOXF1, ACDMPV, mouse, toxicity, safety

Introduction
ACDMPV is a deadly neonatal condition, typified by defects in coordinated development of alveolar capillaries, 
malpositioning of lung veins and abnormal formation of lung lobules, causing profound hypoxemia, catastrophic 
breathing insufficiency and pulmonary hypertension ensuing rapidly after delivery. Due to the severity of the anomalies 
and breathing failure in ACDMPV newborns, death comes less than one month postnatally despite maximal support.1 

Despite incomplete genetic characterization, heterozygous copy-number variant (CNV) deletions and point mutations 
involving the Forkhead Box F1 (FOXF1) gene locus account for the majority of ACDMPV cases.2 To date, over 70 
unique FOXF1 point mutations in FOXF1 are associated with ACDMPV.2

FOX proteins constitute a grand family of winged helix transcription factors that mediate multiple molecular 
signaling pathways, (eg, VEGF pathway).3,4 Foxf1-null mice have reduced lung endothelial cell number both in lung 
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formation and post-damage pulmonary repair.5 FOXF1 induces VEGF receptor 2, stimulating vascular endothelial 
growth factor signals in model organisms and systems.6

Research has shown nanoparticles can serve therapeutic purposes to deliver both biologic (DNA, mRNA, et cet. For 
gene expression) and inorganic compounds to the cytoplasm. They can be utilized as vaccines and to treat cancer, 
immune disorders, and diabetes. They have tremendous potential for use in tissue regeneration.7

Recent research in the Kalinichenko lab used newly developed polyethylenimine-(5) myristic acid/ poly(ethylene 
glycol)-oleic acid/cholesterol (PEI600-MA5/PEG-OA/Cho) nanoparticle8 to deliver non-integrating angiogenic cDNA- 
expressing plasmids into the neonatal pulmonary bloodstream in order to improve pulmonary capillary formation and 
alveolarization in diseases like ACDMPV. The Kalinichenko laboratory also recently generated Foxf1WT/S52F mice 
containing the S52F FOXF1 mutation in the conserved serine-52. This mutation was generated in the endogenous mouse 
Foxf1 locus via CRISPR/Cas9 genome editing.9 Foxf1WT/S52F mutant mice exhibited all the key features of alveolar 
capillary dysplasia, including fused lung lobes, misalignment of pulmonary veins and increased perinatal mortality.1,9 

These mice were phenotypically rescued with the lab’s aforementioned PEI-PEG nanoparticle therapy carrying STAT3, 
a key downstream target of FOXF1.

Nanoparticles containing Foxf1-expressing plasmids have been used to treat another much more common severe 
respiratory failure disease, bronchopulmonary dysplasia, in mouse models.10 Unfortunately, the plasmid used in this 
research is less than ideal for human use as it retains all sequence necessary for plasmid replication in bacteria. 
Furthermore, an untested hypothesis in ACDMPV research is whether FoxF1 delivered to affected mice causes the 
same or better rescue previously observed with pCMV-STAT3 expression plasmid. Therefore, we designed npFOXF1, 
a Minicircle FOXF1-expressing plasmid driven by an EF1α promoter which is designed for therapeutic use in humans.11 

This MiniCircle plasmid removes all extraneous plasmid sequence leaving only the transcription promoting sequence for 
FOXF1. Furthermore, the PEI-PEG nanoparticle used in this work was produced using FDA synthesis and purification 
guidelines.

Here we demonstrate the safety of PEI-PEG nanoparticles delivering non-integrating FOXF1 minicircle expression 
plasmid into neonatal mice. We report here that npFOXF1 was well tolerated in mice which demonstrating normal serum 
chemistry and blood cell indices as well as normal histology. With the safety of npFOX proven through this research, we 
hope to test the safety of this therapy in higher vertebrates including rhesus monkeys with the ultimate goal of offering as 
a therapy for ACDMPV in human subjects on a compassionate use basis. 45

Methods
Ethics Statement
The data, analysis methods, and study reagents will be made available on request from the article’s corresponding author 
to other researchers for purposes of repeating our procedures and results.9,10 All animal studies were based on American 
Association for Accreditation of Laboratory Animal Care recommendations and accepted by the Institutional Animal 
Care and Use Committee of Cincinnati Children’s Hospital Medical Center. Studies with MFLM-91U cell line were 
reviewed and approved for use by Cincinnati Children’s Medical Center Institutional Review Board (IBC2022-0045).12

Mice
Wild-type C57BL/6 mice were used for all studies. On P14, mice were injected intravenously with 25 µL of 
nanoparticles carrying Minicircle plasmid expressing human FOXF1 cDNA (npFOXF1), empty Minicircle vector 
(npEmpty), or RNA (npRNA) through retro-orbital injection. Mice were analyzed at P16 and P21.

Nanoparticles
Highly purified PEI600-MA5/PEG-OA/Cho nanoparticles were synthesized by ZY Therapeutics Inc. (Durham, NC, 
USA) following the protocol in our previous publication.8 The chemical structure of the PEI600-MA5/PEG-OA/Cho 
were confirmed by ZY Therapeutics Inc. via1H NMR. Minicircle (MC) DNA (Foxf1 or Empty or mCherry-Foxf1) or 
RNA (siGENOME Non-Targeting Control siRNAs) were encapsulated into the NP at a mass ratio of 1:16. DyLight 650- 
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NHS ester fluorescent dye was label on the nanoparticles at a mass ratio of 1:100 (dye to nanoparticle) as described 
before to track the nanoparticle in vivo.8 Nanoparticle-DNA polyplexes were injected intravenously into P14 pups 
through retro-orbital injection (5 µg of plasmid DNA or RNA per injection) as described.13 The sizes and surface charges 
of the PEI600-MA5/PEG-OA/Cho nanoparticles were established using dynamic light scattering (DLS) using a Zetasizer 
Nano-ZS (Malvern, Malvern, UK).

FOXF1, mCherry-FOXF1, and Empty Minicircle (MC) Plasmid Production
Human FOXF1 gene or human FOXF1 and mCherry (connected via P2A) were cloned into Multiple Cloning Site (MCS) 
of pMC.EF1α-MCS-SV40polyA Parental Plasmid (PP) to produce FOXF1, mCherry-FOXF1, and Empty (no insertion in 
MCS of PP and used as control) Minicircle plasmids (Minicircle DNA technology, System Biosciences). Briefly, FOXF1, 
mCherry-FOXF1, and Empty PPs were transfected into ZYCY10P3S2T E.coli Minicircle producer competent cells 
(MPCs) which harbor an arabinose-inducible system to express ФC31 integrase and I-SceI endonuclease simultaneously. 
Following propagation of PPs in MPCs, arabinose was added to the media to induce ФC31 integrase and I-SceI 
endonuclease expression. In this process, ФC31 integrase catalyzes an intramolecular recombination between cis- 
positioned attP and attB sites on PPs creating the MC and a bacterial backbone, and I-SceI endonuclease digests the 
bacterial backbone through the 32 copies of I-SceI restriction sites incorporated in the DNA, thus yielding clean MC 
DNA (Figures 1A and B).

qRT-PCR, Western Blotting, Luciferase Assay, and Immunostaining
Mouse MFLM-91U cells were transfected with FOXF1 or Empty MC plasmids using Lipofectamine 3000 reagent 
(Thermo Fisher Scientific). Total RNA isolations, reverse transcriptions, and qRT-PCR analyses were performed as 
previously described14–17 using human and mouse FoxF1 and β-actin probes (Thermo Fisher Scientific). Western blot 
analyses was performed on protein from cellular lysate as reported elsewhere.18,19 MFLM-91U cells were immunos-
tained with FOXF1 (R&D Biosystems) and β-actin (Santa Cruz) as described.14,16,20,21 Luciferase reporter assay was 
used to analyze the function of FOXF1 protein in endothelial MFLM-91U cells as previously described.22

Flow Cytometry Assay
Single suspensions of enzyme-digested lung tissue were used to perform flow cytometry as previously described 24 hours 
after retro-orbital injection of adult mice with np-mCherry-FOXF1 (labeled with DyLight) or npEmpty polyplexes 
(control mice).23,24 Live cells were identified with Zombie UV™ (BioLegend). Cells were evaluated for presence of 
CD45 (clone 30-F11; eBioscience) and CD31 (clone 390; eBioscience) for identification of immune cells (CD45+CD31–) 
and endothelial cells (CD31+CD45–). Cells not expressing any of these markers (CD45–CD31–) were then evaluated for 
epithelial cells using CD326 (clone G8.8; eBioscience). Cells not expressing any of these markers 
(CD45–CD31–CD326–) were then evaluated for pericytes (NG2+CD45–CD31–CD326–) using NG2 antibody 
(clone132.39; Millipore). Fibroblasts (CD140a+CD45–CD31–CD326 NG2–) were identified using CD140a (clone 
APA5; BD Biosciences). Stained cells were analyzed using 5 laser Cytek® Aurora (spectral system).

Blood Sample Collection and Testing
P16 and P21 pups were anesthetized through injecting pentobarbital and blood was then collected through cardiac 
puncture. Fifty microliters of blood were collected into MiniCollect K2EDTA tubes (VACUETTE) for hematological 
analysis, and about 200 µL of blood was collected in Eppendorf tubes for biochemical and metabolic analysis. For 
plasma separation, Eppendorf tubes were centrifuged at 3000 rpm for 10 min at 4°C within two hours of sample 
collection. Hemolysis of samples was avoided and samples with excessive hemolysis were discarded. Samples were 
immediately submitted to IDEXX BioAnalytics for Biochemical and hematological analysis following sample collection. 
Results were compared to data from published norms and physiological data from The Jackson and Charles River 
Laboratories.25–33
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Figure 1 Function of FOXF1 Minicircle plasmid. (A) FOXF1 Minicircle plasmid produced and bacterial backbone degraded by Arabinose induction of a parental plasmid. (B) Gene 
structure of the FOXF1 Minicircle plasmid. (C and D) qRT-PCR showing relative mRNA levels of mouse Foxf1 did not change while human FOXF1 levels increased in MFLM-91U cells 
transfected with FOXF1 compared to Empty Minicircle plasmid. (E) Luciferase reporter assay showing the FOXF1 Minicircle plasmid activates the luciferase activity of the reporter 
construct in MFLM-91U cells. (F) Western blot showing increased expression of FOXF1 protein in MFLM-91U cells transfected with FOXF1 compared to Empty Minicircle plasmid. (G) 
MFLM-91U cells transfected with FOXF1 or Empty Minicircle plasmid stained with DAPI, FOXF1, and β-actin showing hyperfluorescence with overexpression of FOXF1 (cells shown by 
white arrowhead) compared to endogenous mouse Foxf1 expression (cells shown with white arrow). ****P<0.0001. Created with BioRender.com. 
Abbreviation: NB, nonspecific band.
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Histology
Lung, kidney, liver, and intestinal tissues were collected from P21 mice following blood collection, and paraffin sections 
(5µm) were stained with hematoxylin and eosin for histologic analysis.

Statistical Analysis
Mean or median and standard deviations (SD) were calculated for each parameter. One-Way ANOVA test determined 
statistical significance and P values <0.05 were deemed significant.

Results
FOXF1 MC Plasmid Transcribes and Translates FOXF1 in vitro
To test the function of the MC plasmid harboring human FOXF1 gene, MFLM-91U cells were transfected with either the 
FOXF1 MC or Empty MC plasmid. RNA and protein were purified from these cells to perform qRT-PCR and Western 
blot analysis. qRT-PCR results showed significantly increased mRNA transcription levels of human FOXF1 in FOXF1 
transfected cells compared to Empty (Figures 1C and D) while mouse Foxf1 mRNA levels were not different between the 
two groups showing FOXF1 MC plasmid effectively increases human FOXF1 mRNA levels in cells. The function of the 
FOXF1 MC plasmid was further confirmed by Western blot analysis where FOXF1 protein translation increased in 
FOXF1 transfected cells compared to the Empty group (Figure 1F). The function of the FOXF1 protein in the MFLM- 
91U cells was tested using a luciferase assay, where FOXF1 activated a transcription reporter containing the S1pr1 
promoter fusion with luciferase (Figure 1E). Staining of MFLM-91U cells with FOXF1 antibody further demonstrates 
FOXF1 overexpression in cells transfected with FOXF1 MC plasmid which appear hyperfluorescent (shown by white 
arrowhead), compared to endogenous expressed mouse Foxf1 (shown by white arrow) in both FOXF1 and Empty MC 
transfected groups (Figure 1G).

The PEI600-MA5/PEG-OA/Cho nanoparticles target endothelial cells in polyplex with MC plasmids.
The size distribution and the surface potential of the nanoparticle is shown in Figures 2A and B. The hydrodynamic 

diameter of the nanoparticle was calculated by Stokes–Einstein equation (Table 1). The gene capacity of the nanoparticle 
was quantified by a gel electrophoresis analysis (Figure 2C). At the mass ratio of 4:1 (NP: DNA ratio), DNA migration 
was fully restricted, which was considered as the DNA was fully encapsulated into the NPs forming DNA-nanoparticle 
complexes (Figure 2C and D). The chemical structure of the synthetic polymers (PEI600-MA5 and PEG-OA) were 
confirmed by 1H NMR (Figure 2E and F). The broad peaks in the region around 3.5 ppm corresponding to the proton 
signal from the PEI, where the characteristic peaks of myristic acid can be found at 1.6 ppm, 1.3 ppm and 0.9 ppm 
(Figure 2E). Similarly, the carbon double bond from the oleic acid shows a peak at around 5.3 ppm where the 
characteristic peaks from PEG can be found at 3.4 ppm and 3.6 ppm (Figure 2F).

To identify pulmonary cells targeted by NP-DNA polyplexes, the polymer-DNA was labeled with DyLight 650 
quantum dots and mCherry sequence was added to the FOXF1 MC plasmid, and injected into adult mice via retro-orbital 
injection. Twenty-four hours later, flow cytometry analysis was performed for cell surface markers using single-cell 
suspensions derived from enzymatically digested lung tissue. DyLight 650 fluorescence was present in 99.4% (Figure 3A 
and C and Table 3) and mCherry in 81.2% (Figure 3B and C and Table 2) of lung endothelial cells 
(CD31+CD45–CD326–). Other cell types were also analyzed showing significantly lower mCherry levels in all other 
analyzed cell types compared to endothelial cells (Table 2, Supplementary Figure 1), and less DyLight compared to 
endothelial cells (Table 3, Supplementary Figure 1), which demonstrated the NP-DNA polyplexes effectively targets lung 
endothelial cells and translation occurs in vivo.

Hematological, Biochemical, and Histopathological Analysis
In total, 102 C57BL/6 mice were tested to analyze the toxicity of the Minicircle plasmid encapsulated by nanopar-
ticles. Mice were injected intravenously with npFOXF1, npEmpty, or npRNA at P14 and blood and plasma samples 
were collected at P16 and P21 to analyze biochemical (ALP, AST, ALT, creatine kinase, albumin, total protein, 
globulin, bilirubin, BUN, creatinine, cholesterol, glucose, calcium, phosphorus, bicarbonate) and hematological 
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(neutrophil, lymphocyte, monocyte, eosinophil, basophil, WBC, reticulocyte, platelet, RBC, MCV, MCH, HGB, 
MCHC) parameters.

With regards to biochemical analysis, while the vast majority of the parameters did not show a significant change 
(Table 4 and Table 5), ALP was elevated in npFOXF1 and npEmpty treated groups, and ALT, AST, creatine kinase, and 

Figure 2 Structure of PEI600-MA5/PEG-OA/Cho nanoparticles. (A) Size distribution of the PEI600-MA5/PEG-OA/Cho nanoparticles. (B) Zeta potential distribution of the 
PEI600-MA5/PEG-OA/Cho nanoparticles. (C) Gel electrophoresis analysis of plasmids bound to the PEI600-MA5/PEG-OA/Cho nanoparticles at different nanoparticle to 
DNA mass ratio. Number on lane 1 is 0, which is control, with 1 ug of DNA but 0 ug of NP; the number on Lane 2 is 1, which means 1 ug of DNA mixed with 1 ug NP (NP: 
DNA mass ratio is 1); the number on Lane 3 is 2, which means 1 ug of DNA mixed with 2 ug NP (NP: DNA mass ratio is 2). When the NP: DNA mass ratio reaches 4, all 
the DNA has been encapsulated in the Nanoparticles. (D) Schematic representation of nanoparticle structure shows PEI600-MA5/PEG-OA/Cho nanoparticles. (E) 1H NMR 
spectrum of PEI600-MA5. (F) 1H NMR spectrum of PEG-OA. Created with BioRender.com.
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cholesterol were elevated in all treated groups compared to the control untreated group at P16 (Figure 4). These 
differences returned to levels resembling the untreated group by P21 (Figure 5).

Histopathological analysis showed no significant change in lung, kidney, liver, and intestine at P21 as shown in Figure 6.
The hematological analysis of toxicity showed most parameters did not change with treatment (Table 6 and 

Table 7). At P14, neutrophil and WBC levels were elevated in npRNA and npFOXF1 treated groups, and lymphocyte, 
monocyte, and platelet counts were elevated in all treatment groups compared to untreated groups (Figure 7). Most 
parameters dropped to levels seen in the untreated group at P21, while neutrophil levels in npFOXF1 and lymphocyte 
and monocyte levels in the npRNA treated group remained higher than the untreated group (Figure 8) (although these 
differences were neither clinically significant nor very different from historical controls from other references) (Table 6 
and Table 7).

Discussion
Here we report the production and validation of an innovative Minicircle plasmid using an Ef1α-promoter to drive 
expression of human FOXF1 in pulmonary vascular endothelium. We have demonstrated that it faithfully and robustly 
expresses human FOXF1 that functions to upregulate FOXF1 promoters in mouse fetal lung cell lines. Thus, we report 
a Minicircle expression plasmid tailored for human safety and efficacy trials.

We showed that when injected into P14 mice, npFOXF1 causes only minor changes in a minority of serum 
chemistries in P16 mice which normalize to control levels in P21 mice. We further show no significant differences in 
serum blood indices. Finally, organ histology shows no tissue differences between treated and control tissue specimens. 
Therefore, we conclude that no significant toxicity was observed in neonatal mice treated with npFOXF1. We plan to 
extend this work to higher vertebrates, specifically in rhesus monkeys to further confirm safety.

No current therapy is available for ACDMPV. Our previous research has shown that nanoparticles delivering STAT3- 
expressing plasmid (npSTAT3) specifically restores the deficient STAT3 expression (a downstream target upregulated by 

Figure 3 Nanoparticle-DNA polyplexes efficiently target endothelial cells in mouse lung. Mice were injected with DyLight 650–labeled np-mCherry-FOXF1 (mCherry) or 
npEmpty (Control) polyplexes. Endothelial cells (CD31+CD45–), DyLight 650, and mCherry were identified using 5 laser Cytek® Aurora (spectral system) 24 hours post 
injection. (A and B) Figure shows increased DyLight 650 (A) and mCherry (B) in endothelial cells. (C) Endothelial cells are positive for both DyLight 650 and mCherry. 
Created with BioRender.com.

Table 1 Hydrodynamic Size and Zeta Potential of Polyplex in Normal Glucose

Z-Average [d.nm] Zeta Potential [mV]

PEI600-MA/PEG-OA/Cho nanoparticle 153.6 ± 1.2 41.0 ± 1.6
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Table 2 Statistics of mCherry Flow Cytometry Analysis

Cell type Treatment Group Number of mCherry 
Positive Cells

Frequency of mCherry 
Positive Cells

Mean Fluorescent 
Intensity

Endothelial mCherry 8894 81.2 3196

Control 533 1.80 2485

Immune mCherry 495 5.64 3749
Control 230 1.30 4504

Epithelial mCherry 9 3.75 8176

Control 12 3.20 9534
Fibroblast mCherry 5 2.08 3669

Control 0 0 n/a
Pericytes mCherry 10 2.72 6015

Control 10 1.57 9108

Table 3 Statistics of DyLight Flow Cytometry Analysis

Cell type Treatment Group Number of DyLight 
Positive Cells

Frequency of DyLight 
Positive Cells

Mean Fluorescent 
Intensity

Endothelial mCherry 10,883 99.4 247,955

Control 0 0 n/a

Immune mCherry 4508 51.4 19,982
Control 0 0 n/a

Epithelial mCherry 179 74.6 51,208

Control 0 0 n/a
Fibroblast mCherry 198 82.5 32,471

Control 0 0 n/a

Pericytes mCherry 230 62.7 37,580
Control 0 0 n/a

Table 4 Serum Biochemistry Values for P16 Mice

Parameters (Unit) Mean ± SD Median (Range)

Untreated npRNA npEmpty npFOXF1 Reference Values

ALP (U/L) 650.6 ± 92.09 483.6 ± 38.82 705 ± 144.68 687 ± 119.31 137.5 (57–238)
AST (U/L) 86.2 ± 24.88 107.6 ± 38.46 210.18 ± 113.06 186 ± 58.71 87 (31.15–293.4)

ALT (U/L) 20.6 ± 6.02 30.8 ± 8.29 27.64 ± 9.09 40 ± 8.74 37.5 (13.15–110)

Creatine Kinase (U/L) 315.4 ± 184.55 441.2 ± 178.4 1114.55 ± 746.89 588.67 ± 311.3 323 (92–626)
Albumin (g/dL) 2.18 ± 0.22 2.44 ± 0.11 2.04 ± 0.14 2.28 ± 0.12 5.35 (4.35–8.03)

Total Protein (g/dL) 0.14 ± 0.05 0.18 ± 0.04 0.15 ± 0.05 0.15 ± 0.05 5.8 (2.31–5.94)
Globulin (g/dL) 3.52 ± 0.29 4.18 ± 0.18 3.46 ± 0.23 3.97 ± 0.23 0.2211 (0.1296–0.3)

Total Bilirubin (mg/dL) 1.34 ± 0.09 1.74 ± 0.09 1.43 ± 0.12 1.68 ± 0.12 n/a

Bilirubin – Conjugated (mg/dL) 0.06 ± 0.05 0.04 ± 0.05 0.02 ± 0.04 0.05 ± 0.05 26.5 (14–162)
BUN (mg/dL) 20 ± 5.57 15.4 ± 2.88 19 ± 2.83 20 ± 2.61 0.325 (0.1836–0.666)

Creatinine (mg/dL) 0 ± 0 0 ± 0 0 ± 0 0 ± 0 46.44 (20.88–114)

Cholesterol (mg/dL) 113.8 ± 13.86 118.8 ± 10.18 136.09 ± 8.79 175.33 ± 18.8 151.2 (88.2–374.94)
Glucose (mg/dL) 140 ± 94.23 229.6 ± 40.86 150.45 ± 24.52 146.33 ± 27.32 40.5 (7.6–45)

Calcium (mg/dL) 8.38 ± 0.98 6.56 ± 0.43 7.25 ± 1.2 6.45 ± 0.45 37.26 (5.6–74.7)

Phosphorus (mg/dL) 10.18 ± 1.64 10.82 ± 0.29 10.4 ± 0.92 10.3 ± 0.65 n/a
Bilirubin – Unconjugated (mg/dL) 13.4 ± 2.41 9.8 ± 0.45 13.55 ± 2.38 13.17 ± 1.47 16.5 (14–19)

Bicarbonate (mmol/L) 0 ± 0 0 ± 0 0 ± 0 0 ± 0 n/a
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FOXF1) in the transgenic mouse model of ACDMPV, which is caused by the S52F mutation in FOXF1.9 In the 
npSTAT3-treated mice, survival is significantly increased, and pulmonary capillary vasculature is significantly and 
substantially restored with a single dose. We hope this work with our newly designed npFOXF1 biologic will ultimately 
offer safe and therapeutic FOXF1 gene expression delivery to pulmonary endothelial cells in human neonates suffering 
from ACDMPV, significantly ameliorating their disease course.

Table 5 Serum Biochemistry Values for P21 Mice

Parameters (Unit) Mean ± SD Median (Range)

Untreated npRNA npEmpty npFOXF1 Reference Values

ALP (U/L) 604.33 ± 54.25 451.5 ± 48.12 516.15 ± 50.61 525.83 ± 80.84 137.5 (57–238)
AST (U/L) 100.5 ± 20.6 64.33 ± 7.47 133.69 ± 58.52 79.33 ± 27.75 87 (31.15–293.4)

ALT (U/L) 26.5 ± 3.67 26.33 ± 20.41 36.46 ± 13.3 25.5 ± 5.32 37.5 (13.15–110)

Creatine Kinase (U/L) 303 ± 112.74 149.17 ± 88.41 410.92 ± 213.42 159.17 ± 60.11 323 (92–626)
Albumin (g/dL) 2.47 ± 0.08 2.48 ± 0.16 2.48 ± 0.19 2.47 ± 0.08 5.35 (4.35–8.03)

Total Protein (g/dL) 0.15 ± 0.05 0.1 ± 0 0.1 ± 0 0.17 ± 0.05 5.8 (2.31–5.94)

Globulin (g/dL) 3.95 ± 0.08 4.02 ± 0.26 4.01 ± 0.26 4.02 ± 0.15 0.2211 (0.1296–0.3)
Total Bilirubin (mg/dL) 1.48 ± 0.04 1.53 ± 0.12 1.53 ± 0.15 1.55 ± 0.08 n/a

Bilirubin – Conjugated (mg/dL) 0 ± 0 0.05 ± 0.05 0.02 ± 0.04 0.03 ± 0.05 26.5 (14–162)

BUN (mg/dL) 43.83 ± 27.2 23.5 ± 4.59 26.23 ± 4.9 27.67 ± 3.93 0.325 (0.1836–0.666)
Creatinine (mg/dL) 0.42 ± 0.57 0 ± 0 0 ± 0 0 ± 0 46.44 (20.88–114)

Cholesterol (mg/dL) 109.5 ± 17.44 69.83 ± 5.49 68 ± 12.58 62.5 ± 5.65 151.2 (88.2–374.94)

Glucose (mg/dL) 202.17 ± 37.22 203.17 ± 47.47 185.92 ± 36.3 163.83 ± 40.31 40.5 (7.6–45)
Calcium (mg/dL) 9.48 ± 0.73 9.15 ± 0.31 8.63 ± 1.12 9.02 ± 0.41 37.26 (5.6–74.7)

Phosphorus (mg/dL) 11.23 ± 1.85 9.5 ± 0.51 10.62 ± 0.92 10.32 ± 0.55 n/a

Bilirubin – Unconjugated (mg/dL) 12.83 ± 1.17 14.33 ± 1.37 13.15 ± 1.63 14.5 ± 1.97 16.5 (14–19)
Bicarbonate (mmol/L) 0.15 ± 0.05 0.05 ± 0.05 0.08 ± 0.04 0.13 ± 0.08 n/a

Figure 4 Serum biochemical analysis at P16 shows significant changes in some parameters. Mice were injected with npRNA, npEmpty, or npFOXF1 at P14 and serum was 
collected at P16 for biochemical analysis. Elevation was shown in ALP in npFOXF1 and npEmpty treated groups when compared with npRNA group. ALT was significantly 
increased in npFOXF1 compared to both untreated as well as npEmpty controls. AST was significantly increased in npEmpty compared to untreated controls. Creatine kinase 
was significantly increased in npEmpty compared to untreated controls. Cholesterol was elevated in npFOXF1 compared with both untreated and npRNA controls. 
Additionally cholesterol was significantly increased in npEmpty compared to the control untreated group. *P<0.05; **P<0.01. Created with BioRender.com.
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Figure 6 npDNA and npRNA treated groups show no histological difference compare to untreated mice. Mice were injected with npFOXF1, npEmpty, or npRNA at P14 
and tissue was collected at P21 for histopathological analysis. Paraffin section of lung, kidney, liver, and intestine tissues were stained with hematoxylin and eosin. Tissue 
sections obtained from treated mice shows no change compared to untreated mice. Created with BioRender.com.

Figure 5 Serum biochemical analysis at P21 shows similar levels in treated groups compared to untreated mice. Mice were injected with npRNA, npEmpty, and npFOXF1 at 
P14 and serum was collected at P21 for biochemical analysis. Results showed elevation in ALP, ALT, AST, creatine kinase, and cholesterol seen in P16 mice goes down to 
untreated group levels or lower by P21. *P<0.05; ***P<0.001; ****P<0.0001. Created with BioRender.com.
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Table 6 Hematological Values for P16 Mice

Parameters (Unit) Mean ± SD Median (Range)

Untreated npRNA npEmpty npFOXF1 Reference Values

Neutrophil (%) 14.9 ± 0.62 29.22 ± 12.53 24.98 ± 10.16 28.72 ± 10.88 14.3 (12–22)

Neutrophil (/µL) 250 ± 49.91 990.4 ± 499.68 412 ± 233.47 1121.6 ± 573.45 335 (150–1440)
Reticulocyte (%) 15.2 ± 3.34 13.32 ± 3.19 9.74 ± 2.46 11.92 ± 2.44 3.8 (3.2–6.7)

WBC (K/µL) 1.68 ± 0.3 3.24 ± 0.67 2.13 ± 1.09 3.72 ± 0.91 6.4 (2.2–8.9)

Absolute Reticulocyte (K/µL) 788.75 ± 197.04 794.2 ± 205 472.25 ± 140.96 661.8 ± 115.77 n/a
RBC (M/µL) 5.17 ± 0.25 5.95 ± 0.35 4.82 ± 0.52 5.58 ± 0.34 9.47 (8.2–10.3)

HGB (g/dL) 8.68 ± 0.43 8.66 ± 0.88 10.2 ± 7.18 7.98 ± 0.52 14.2 (11.7–16)

Lymphocyte (/µL) 1225 ± 187.56 2101.6 ± 350.43 1545.22 ± 890.24 2441 ± 456.19 728 (386–6870)
Lymphocytes (%) 73.5 ± 6.79 65.64 ± 7.65 68.24 ± 13.32 66.56 ± 5.97 79.1 (71.1–86.7)

Nucleated RBC (/100 WBC) 0 ± 0 0 ± 0 0.22 ± 0.67 0 ± 0 n/a

HCT (%) 32.78 ± 1.24 35.36 ± 2.75 30.18 ± 3.04 31.56 ± 1.71 42 (37.14–46.6)
Monocyte (/µL) 92.5 ± 39.92 130.2 ± 97.53 108.56 ± 91.03 125.4 ± 120.31 230 (21.5–410)

Monocytes (%) 5.4 ± 1.41 4.42 ± 4.02 4.74 ± 3.6 3.62 ± 4.32 4.37 (0.9–5)

Eosinophil (/µL) 95 ± 80.84 10 ± 22.36 39 ± 88.39 22 ± 49.19 140 (13.7–419)
Eosinophils (%) 5.55 ± 4.51 0.4 ± 0.89 1.26 ± 1.74 0.76 ± 1.7 1.55 (0.6–1.7)

MCV (fL) 63.5 ± 1.29 59.4 ± 2.61 62.5 ± 2.73 58 ± 0 46.8 (42.69–50.74)

Basophil (/µL) 12.5 ± 18.93 8 ± 17.89 29 ± 68.5 9.8 ± 21.91 10 (0–30)
Basophils (%) 0.65 ± 0.9 0.32 ± 0.72 0.78 ± 1.07 0.34 ± 0.76 0.3 (0–0.38)

MCH (pg) 16.8 ± 0.41 14.56 ± 1.25 15.75 ± 0.65 14.28 ± 0.24 15 (14–16.23)

MCHC (g/dL) 26.48 ± 0.38 24.48 ± 1.25 25.13 ± 0.56 25.3 ± 0.51 31.1 (28.94–35)
Platelet Count (K/µL) 770 ± 90.87 902.2 ± 97.67 674.88 ± 336.37 714.4 ± 134.99 1167 (616–1613)

Table 7 Hematological Values for P21 Mice

Parameters (Unit) Mean ± SD Median (Range)

Untreated npRNA npEmpty npFOXF1 Reference Values

Neutrophil (%) 11.42 ± 3.67 10.18 ± 6 18.2 ± 6.58 19.8 ± 18.36 14.3 (12–22)

Neutrophil (/µL) 188.8 ± 82.05 253.75 ± 114.07 386.89 ± 200.14 590.8 ± 588.84 335 (150–1440)
Reticulocyte (%) 11.86 ± 1.11 10.88 ± 1.63 12.3 ± 4.01 14.02 ± 2.08 3.8 (3.2–6.7)

WBC (K/µL) 1.7 ± 0.78 2.63 ± 0.36 2.16 ± 0.71 2.8 ± 0.49 6.4 (2.2–8.9)

Absolute Reticulocyte (K/µL) 765.2 ± 38.45 626 ± 62.33 791.89 ± 250.46 830.4 ± 138.22 n/a
RBC (M/µL) 6.48 ± 0.47 5.81 ± 0.58 6.47 ± 0.47 5.92 ± 0.31 9.47 (8.2–10.3)

HGB (g/dL) 8.94 ± 0.58 7.38 ± 1.93 8.5 ± 1.32 6.78 ± 0.6 14.2 (11.7–16)

Lymphocyte (/µL) 1353.4 ± 637.01 2005.25 ± 462.03 1543 ± 550.44 1121.6 ± 1035.85 728 (386–6870)
Lymphocytes (%) 79.51 ± 2.83 75.55 ± 8.57 71.16 ± 7.49 38.6 ± 35.39 79.1 (71.1–86.7)

Nucleated RBC (/100 WBC) 0 ± 0 0 ± 0 0 ± 0 0 ± 0 n/a

HCT (%) 34.52 ± 3.17 31.6 ± 6.81 34.38 ± 4.5 28.96 ± 2.72 42 (37.14–46.6)
Monocyte (/µL) 117.2 ± 72.89 311.75 ± 54.64 197.78 ± 191.46 47.6 ± 47.76 230 (21.5–410)

Monocytes (%) 6.72 ± 1.73 12.15 ± 3.21 9.18 ± 7.14 1.6 ± 1.52 4.37 (0.9–5)

Eosinophil (/µL) 34.4 ± 35.09 34.75 ± 18.79 16 ± 19.88 0 ± 0 140 (13.7–419)
Eosinophils (%) 1.86 ± 1.31 1.35 ± 0.75 0.83 ± 0.94 0 ± 0 1.55 (0.6–1.7)

MCV (fL) 53.2 ± 1.3 54.25 ± 5.85 53 ± 4.69 48.8 ± 3.03 46.8 (42.69–50.74)

Basophil (/µL) 6 ± 5.48 19.75 ± 15.95 12 ± 20.03 0 ± 0 10 (0–30)
Basophils (%) 0.5 ± 0.47 0.78 ± 0.59 0.63 ± 1.12 0 ± 0 0.3 (0–0.38)

MCH (pg) 13.8 ± 0.26 12.58 ± 1.9 13.09 ± 1.4 11.46 ± 0.74 15 (14–16.23)

MCHC (g/dL) 25.94 ± 0.74 23.18 ± 0.95 24.67 ± 1.11 23.42 ± 0.16 31.1 (28.94–35)
Platelet Count (K/µL) 867.8 ± 79.14 1155.25 ± 161.88 1150.67 ± 154.57 1346.4 ± 351.86 1167 (616–1613)
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