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Abstract

Respiratory disorders are among the most important medical
problems threatening human life. The conventional therapeutics
for respiratory disorders are hindered by insufficient drug
concentrations at pathological lesions, lack of cell-specific targeting,
and various biobarriers in the conducting airways and alveoli.
To address these critical issues, various nanoparticle delivery
systems have been developed to serve as carriers of specific
drugs, DNA expression vectors, and RNAs. The unique
properties of nanoparticles, including controlled size and
distribution, surface functional groups, high payload capacity,
and drug release triggering capabilities, are tailored to
specific requirements in drug/gene delivery to overcome

major delivery barriers in pulmonary diseases. To avoid off-target
effects and improve therapeutic efficacy, nanoparticles with high
cell-targeting specificity are essential for successful nanoparticle
therapies. Furthermore, low toxicity and high degradability of
the nanoparticles are among the most important requirements
in the nanoparticle designs. In this review, we provide the most
up-to-date research and clinical outcomes in nanoparticle
therapies for pulmonary diseases.We also address the current critical
issues in key areas of pulmonary cell targeting, biosafety and
compatibility, and molecular mechanisms for selective cellular
uptake.
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The respiratory system, a primary gate
toward the external environment, is prone
to potential threats from a variety of
airborne species, including chemicals,
pollutants, and microorganisms. The
respiratory system is comprised of
remarkably diverse cell types residing in
unique cellular niches, including the
trachea, conducting airways, pulmonary
blood vessels, and highly vascularized
peripheral alveoli, where the exchange of
oxygen and carbon dioxide occurs between
the air and blood. The lung is susceptible to
various injuries by barotrauma, ionizing

radiation, inhaled chemicals, high and low
oxygen concentrations, airborne viruses,
and bacteria that cause damage to the
respiratory epithelium, endothelium, and
stroma, leading to acute and chronic
respiratory disorders.

Current Challenges in Gene
and Drug Therapies

Recent studies have developed innovative
gene therapy approaches for the treatment
of chronic pulmonary disorders such as lung
cancer and cystic fibrosis (1–4). However,

efficient gene therapy demands specially
designed delivery vehicles for high gene
payloads, cell-specific targeting, and
significant transfection efficiency (1). Viral
vectors have been widely employed in gene
delivery for their excellent cell invasion
capabilities, but high biosafety risks and
adverse immune responses have raised
considerable concerns (4, 5). Drug
solubility and selectivity are critical
challenges in conventional deliveries of
pharmacological agents (6). It is, therefore,
critical to develop new approaches to
deliver therapeutic agents to the
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pathological sites while ensuring biosafety
and compatibility. In recent years, there
have been extensive studies focusing
on nanoparticle-based deliveries of
nonintegrating DNA vectors, stabilized
mRNAs, siRNAs, and small molecule
compounds, which have shown a promise
in treating pulmonary disorders.

Nanoparticle Delivery
Systems and Their
Advantages in Biomedical
Applications

Nanomaterials have been developed and
widely used in biomedical applications, such
as cancer therapy (7–10), regenerative
medicine (11–13), vaccine or vaccine
adjuvants (14–17), infections (18–20), and
tissue imaging (21–23). Nanoparticle-based
gene therapies prevented lung tissue
remodeling in the elastase-induced mouse
model of emphysema (24), improved
wound healing and regeneration in
patients with diabetes (25), and increased
angiogenesis in airway transplants (26).
There has been extensive research on the
development of nanoparticles composed of
polymeric, metallic, and ceramic materials
that enable efficient biodistribution (27),
cell-specific targeting (28–30), and

internalization (31, 32). Biological
macromolecules, such as proteins and
nucleic acids, have large sizes that hinder
effective cellular uptake. Nanoparticles,
even those larger than the biological
macromolecules, can be internalized via
endocytic pathways (33). Furthermore,
nanoparticles can be engineered via
surface functionalization to meet the key
requirements of gene delivery, including
cellular uptake. For example, endocytosis of
nanoparticles can be enhanced by targeting
caveolae, the bulb-shaped membrane
invaginations. Shuvaev and colleagues
developed nanoparticles with caveolae-
specific antibodies for efficient delivery
through the caveolae pathway (34, 35).
Increased concentrations of nanoparticles
in the targeted regions can be achieved
through the enhanced permeability and
retention (EPR) (36–38). Simply by the
sheer size of nanoparticles, they tend
to accumulate in tumor tissue because of
leaky blood vessels that are formed via
pathological angiogenesis. The surface
charge of the nanoparticles is an important
biophysical parameter that is often reversed
between the nanoparticles and the targeted
cells for electrostatic attraction at the
nano–bio interfaces. In cancer diagnosis
and therapeutics, the surface charge-driven
targeting was proven to be effective for the

detection of circulating tumor cells
without any antibody-based biomarkers
(30, 39). Furthermore, folic acid–modified
nanoparticles have been shown to be
effective in tumor cell targeting (40–42),
leading to enhanced cellular uptake by
tumor-associated macrophages (43).
Surface functionalization of nanoparticles
with polyethylene glycol (PEG) effectively
increased the biomarker-based cell
targeting by preventing nonspecific
macrophage association (44, 45).

Recent advances in nanomaterials have
shown a variety of novel “smart structures”
capable of controlled release of the
nanoparticle cargo via different triggering
mechanisms (46, 47), endosomal escape
(48–50), and magnetically guided
nanoparticle delivery (51–53), making nano-
based delivery more efficient. For drug
delivery, hydrophobic small molecule
compounds can be encapsulated into
nanoparticles for improved stability and
enhanced therapeutic effects (54, 55).
Efficient gene deliveries have been achieved
by the storage of DNAs or RNAs in
polymeric carriers with surface charges that
can be altered to improve cellular uptake
and exogenous gene expression (56, 57).
Recent nano delivery of CRISPR/Cas9
components to the lung tissue has been
shown to be a breakthrough in gene
delivery–based therapeutics (58).
Specifically, zwitterionic amino lipids were
employed to deliver Cas9 mRNA and single-
guide RNAs, resulting in efficient gene
targeting (59). Similarly, the selective organ
targeting nanoparticles were successfully
used for the delivery of CRISPR/Cas9
components in a tissue-specific manner (60).

Nanoparticle Delivery
Systems for Pulmonary
Applications

To efficiently use the nanoparticles for
biomedical applications, it is important to
understand the role of respiratory cell types
in pulmonary diseases. For example, an
imbalance of ion transport in airway epithelial
cells leads to various mucoobstructive
diseases (61, 62). Dysfunction of airway
ciliated cells is associated with ciliopathies,
cystic fibrosis, and asthma (63–65). Lung
repair after injury is dependent on multiple
respiratory cell types, including lung
epithelium, endothelium, and fibroblasts
(66). Abnormalities in lung repair lead to
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Figure 1. Systemic and pulmonary administrations of nanoparticles to target respiratory cell types.
Nanoparticles can be delivered to the lung tissues through pulmonary administration (i.t. and i.n.) and
systemic administration (i.v.). The ability of nanoparticles to target respiratory cell types are dependent
on the size and shape of the nanoparticles, their composition and surface charge, and the presence
of targeted ligands such as antibodies.
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chronic respiratory diseases, such as
idiopathic pulmonary fibrosis, pulmonary
arterial hypertension, and chronic
obstructive pulmonary disease (67–69). It is
therefore critical to develop unique nanoparticle
delivery systems capable of targeting the specific
cell types in the human lung.

For selective targeting of respiratory
cell types, new strategies will be needed
because of the unique biological
characteristics of the pulmonary system.
As shown in Figure 1, nanoparticles
can be delivered either intratracheally or
intravenously, but both methods encounter
different barriers. Intratracheal
administration is commonly used as the
first choice to target airway epithelial cells
because nanoparticles can be directly
delivered to the lung tissue without
interference from the first-pass metabolism
(70). However, the nanoparticles’
movement toward the target cells can
be obstructed by the mucus layer,
bronchoalveolar fluid, and phagocytes
within conducting airways and alveoli
(71–73). Although the nanoparticles are
capable of delivering the cargo to vascular
endothelial cells without interference from
the mucus barrier, the systemic delivery
is not specific to the lung tissue. This
problem can be alleviated by developing
nanoparticles with cell- or tissue-specific
properties and controlling the cargo release
in the desirable regions (74). There are
three major considerations in the
nanoparticle design, as follows: 1) physical
properties (optimal size and shape for the
EPR effect), 2) chemical and surface
properties (composition and surface charge
for charge-driven cell binding), and 3)
bimolecular surface modifications
(conjugation of antibodies on nanoparticle
surfaces for specific cell targeting) (33, 72,
74, 75). Often, synergistic effects from
multiple properties of the nanoparticles are
used for specific therapeutics, especially in
preclinical and clinical settings. Herein, we
review the most recent advances in
nanomedical research, with an emphasis on
gene delivery for pulmonary therapeutics.

Desirable Features of
Nanoparticles for Biomedical
Delivery Systems

The overall properties of the nanoparticles
play key roles in the drug and gene delivery.
Nanoparticles need to be designed and

synthesized to achieve special properties
such as dispersion in physiological
fluids, specific binding to targeted cells,
encapsulation of drugs and genes, and
spatial and temporal release of cargo upon
smart triggering mechanisms. For example,
the size and shape of iron oxide (Fe3O4)
nanoparticles can be controlled by
different synthetic methods and surface
functionalization (76–78). The size,
granularity, and nanostructure of the
iron oxide nanoparticles can be changed
by altering the concentration of poly-
g-glutamic acid during chemical synthesis.
The hydrodynamic diameter and the
surface charge of the nanoparticles are also
dependent on their chemical composition.
For example, the surface charge of polyplex
nanoparticles can be changed by different
percentages of polyacrylic acid and by the
polyethylenimine (PEI):DNA ratio during
chemical synthesis (79). Biocompatibility is
another important feature of nanoparticles
for biomedical delivery systems. For this
purpose, nanoparticles are synthesized
from biocompatible and biodegradable
materials, such as poly lactide-co-glycolide
(PLGA) (80), chitosan (81, 82), and fatty
acids (79, 83). The surface function groups
play an important role in nanoparticle
biocompatibility. Recent studies reported
that a replacement of 10% of surface active
silanol groups by amine groups can reduce
the cellular toxicity of silica nanoparticles
(84).

Many different types of nanomaterials
have been developed for biomedical
applications. These typically include
mesoporous nanoparticles (7, 9, 85),
liposomes (86), and polyplexes (56).
For gene delivery, plasmid DNAs or
stabilized RNAs can be carried by
cationic nanomaterials, such as PEI or
polyamidoamine, via electrostatic
interaction (87, 88). These cationic
polymers can be added to organic or
inorganic substrates to encapsulate the
vectors. In drug delivery, amphiphilic
materials such as lipids and block polymers
are widely used to encapsulate different
drugs. Some compounds, including RCM-1
or paclitaxel, are highly hydrophobic
(89–92) and therefore easily self-assembled
with amphiphilic materials into
nanoparticles. In addition to drug loading,
various strategies have been developed to
control the release of the compounds in
targeted tissues for improved efficiency.
One common strategy is to use stimuli-

sensitive materials, such as pH-responsive
polymers (91), which can be degraded in
the low pH endosomes or lysosomes to
release the cargo (93). Another example of
stimuli-sensitive materials is the chemically
disassembled structures, such as disulfide
bonds (46) and thioketal bonds (94), which
can easily decouple in the presence of the
particular chemicals in the cytoplasm.

An important consideration in the
nanoparticle design is the ability to bind to
specific cells or tissues. Targeting strategies
can be classified into passive and active
targeting. Passive targeting is usually related
to the physiochemical properties based on
the size and charge of the nanoparticles
that enable the nanoparticles to bind on
oppositely charged cells. Active targeting
can be mainly achieved through conjugation
of the nanoparticles with cell-specific
ligands. The ligands usually vary and
depend on the type of cells being targeted,
and therefore, their specificity should
change according to the nanoparticle design.
Many types of nanoparticles have been
developed to target respiratory cells in vivo
(Figure 2). Polyplex nanoparticles,
consisting of nucleic acids and cationic
polymers, are often used in pulmonary gene
delivery (79). Without nucleic acids, the
polymers can self-assemble into polymeric
nanoparticles (95). The biomolecules such
as lipids, proteins, and DNAs are typically
used in the nanoparticle development
because of low toxicity and high efficiency
of cargo delivery (96–98). Some inorganic
nanomaterials, such as superparamagnetic
iron oxide nanoparticles, were capable of
accumulating in specific lung regions under
a locally applied magnetic field (99).

Nanoparticles Targeting
Pulmonary Epithelial Cells

Compared with systemic drug delivery by
oral or intravenous routes, pulmonary
administration (intratracheal or intranasal
routes) delivers the nanoparticles directly to
the lung via the trachea. Nanoparticle
uptake by respiratory epithelial cells can
avoid the first-pass metabolism, therefore
increasing the local concentrations of
therapeutic agents in the lung tissue
(100–105). However, the airway diameter
in different lung regions varies, causing
an uneven distribution of the inhaled
nanoparticles. Therefore, the nanoparticle
design has to be tailored to the structure of
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the respiratory tract for optimal delivery.
Several studies investigated the relationship
between nanoparticle size and local uptake
in the respiratory system. The larger
particles with diameters .5 mm are mainly
trapped in the upper airways (106–109),
whereas the smaller particles with
diameters of 1–5 mm are suitable for the
lower airways (100, 108, 110). Particles with
an average diameter of ,500 nm can reach
the alveoli via Brownian diffusion (111).
Nanoparticles ,200 nm in size have been
reported to efficiently target respiratory
epithelial cells while avoiding the clearance
by macrophages (73, 108, 112).

Overcoming the Mucus Barrier
Aerosolized nanoparticle delivery is a
promising route to reduce systemic toxicity
and achieve specific targeting of pulmonary

tissues. However, the airway mucus layer
presents a considerable barrier for the use of
aerosols. Mucus is produced by airway
goblet cells and covers the epithelial surfaces
in the trachea and conducting airways,
acting as a barrier to protect the epithelium
from foreign substances such as pathogens
and pollutants (113). In the respiratory
system, inhaled nanoparticles are rapidly
removed by mucociliary clearance, which
sets a limited time window for pulmonary
delivery (114–116). To overcome this
barrier, the nanoparticles have to penetrate
an external (luminal) layer of mucus
(Figure 1). To avoid being cleared, they
must quickly enter the internal (adherent)
mucus layer (114, 117). Mucociliary
clearance usually removes nanoparticles
of large sizes as well as those directly
interacting with mucus. For mucus

penetration, it is important to develop small
nanoparticles that do not bind to the
mucus. In a recent report, nanoparticles
with diameters .500 nm showed low
diffusion rates and were rapidly removed
through mucociliary clearance, whereas
those with diameters ,200 nm had a better
chance of mucus penetration (114). Based
on these results, the mucus-penetrating
property of nanoparticles has a size
dependence, and the small nanoparticles
have a higher ability to overcome the
mucus barrier (118). To reduce interaction
with mucus, the nanoparticles should
be hydrophilic with a neutral surface
(118–123). Nanoparticles containing PEG
have been widely used specifically for this
purpose (120, 124, 125). Beck-Broichsitter
and colleagues developed a brush-like
triblock polymer based on a PEG and
polypropylene glycol coating and
demonstrated that interactions between
the nanoparticles and the mucus and
the lung surfactant are dependent on
the thickness and density of the PEG
coating (126). In addition to PEG, several
alternative modifications have been recently
reported. Leal and colleagues designed the
nanoparticles coated by mucus-penetrating
peptides, which were more effective
in mucus penetration and epithelial
cell uptake compared with control
nanoparticles without the peptide coating
(127). Another strategy to penetrate the
mucus is through the use of mucolytics in
the nanoparticle design. This strategy has
been shown to be successful by the use
of disulfide breaking agents (N-acetyl-
cysteine) and mucolytic enzymes (papain
and bromelain), which were incorporated
into the nanoparticle formulations (114,
119, 128–131). A “nano-into-micro” dry
powder was recently designed for the
delivery of ivacaftor (also known as
Kalydeco or VX-770) to airway epithelial
cells (132). In addition to ivacaftor, these
nanoparticles contained mannitol and
cysteamine, which reduced the viscosity
and increased diffusion through the mucus.

Reducing the Clearance of
Nanoparticles by Alveolar
Macrophages
The clearance of nanoparticles by airway
and alveolar macrophages is a critical issue
that has to be addressed before achieving
epithelial cell targeting via the pulmonary
route. The main factors that determine
macrophage clearance include the size,
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Figure 2. Typical nanoparticles that are used for delivery of therapeutic agents. These include
polymer-based nanoparticles, which can be classified into polyplexes and polymeric nanoparticles
on the basis of their cargo and assemble driven force. Liposomes, protein nanoparticles, DNA
nanoparticles, and magnetic composite nanoparticles are also used for the delivery of therapeutics
into the lung tissue.
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surface charge, and surface properties
of the nanoparticles (72). The clearance
of nanoparticles takes place mainly by
phagocytosis for those between 500 nm
and 6 mm. Therefore, size is a major
consideration in nanoparticle design (27, 73,
108, 112). The surface potential (charge) of
nanoparticles is also critical to avoid alveolar
macrophages. The positively charged
nanoparticles (cationic) are preferentially
phagocytosed by alveolar macrophages,
whereas the negatively charged nanoparticles
(anionic) have a better chance of escaping
macrophage clearance (72, 133, 134).
Cationic nanoparticles can be internalized
by pulmonary dendritic cells, stimulating
dendritic cell recruitment and maturation in
the lung tissue (135). In contrast, anionic
nanoparticles have been found to be
immunologically inert (135). Several
polymeric materials, such as PEG (44,
45, 125), polyvinyl alcohol (136), and
zwitterionic polymers (137, 138), have
been reported to escape macrophage
clearance. Therefore, these polymers are
often applied on nanoparticle surfaces to
reduce macrophage association. Shen and
colleagues investigated the effect of PEG
surface modifications on cellular uptake of
the nanoparticles and microparticles by
alveolar macrophages in vitro and in vivo
and found lower particle uptake after PEG
coating of the particles (139). Figure 3
summarizes two main strategies in
nanoparticle synthesis to overcome the
mucus barrier and nonspecific uptake by
macrophages. Polyplexes, mesoporous
nanoparticles, and liposomes are typically
used to carry the therapeutic agents, such as
drugs and DNA expression vectors, and
deliver them to the respiratory epithelial cells
(Figure 3A). Mucolytic agents enable the
nanoparticle carriers to penetrate the mucus
barrier and target the airway epithelium
upon pulmonary administration (Figure 3B).

Enhancement of the Nanoparticle
Uptake by the Epithelium
After overcoming the biobarriers of
mucus and macrophage clearance, the
nanoparticles reach the surfaces of epithelial
cells. At this stage, epithelial endocytosis
becomes the key issue in the nanoparticle
design. The nanoparticles are normally
conjugated with specific ligands to interact
with epithelial receptors or adhesion
molecules. Vitamin B12-conjugated
nanoparticles were shown to have higher
cellular uptake by respiratory epithelial cells

compared with the unconjugated
counterparts because of the presence of the
Vitamin B12 receptor on epithelial surfaces
(140, 141). The cell-penetrating peptides
provide alternative options to enhance
the nanoparticle uptake by respiratory
epithelium. Krishnamurthy and colleagues
developed an amphiphilic shuttle peptide
platform for protein delivery to the airway
epithelial cells (142). Osman and colleagues
designed a glycosaminoglycan-binding
enhanced transduction peptide on the
surface of the nanoparticles to enhance
the cellular uptake (143). In addition
to conjugation with specific ligands and
peptides, the chemical composition of
nanoparticles can also be optimized for
epithelial cell uptake. Menon and colleagues
compared epithelial cell uptake abilities
among six different nanoparticles,
including natural and synthetic polymer-
based nanoparticles, in the delivery of DNA
vectors to the alveolar type 1 epithelial cells
in vitro and in vivo. Gelatin-containing
nanoparticles exhibited higher cellular
uptake compared with PLGA-containing
nanoparticles (144). Using the noninvasive
aerosol inhalation method, Patel and
colleagues delivered stabilized mRNAs
with hyperbranched poly-b-amino ester
nanoparticles (PBAEs) to mouse lungs
(145). PBAEs targeted z25% of total
lung epithelial cells after a single dose,
demonstrating that nebulized delivery of
mRNAs facilitated by PBAE nanoparticles
may provide clinically relevant delivery
systems to the respiratory epithelium.

Although inhalation has been widely
reported for targeting of the respiratory
epithelium, intravenous administration can
also be used if the nanoparticles have a
specific modification to enhance the
epithelial cell uptake. Li and colleagues
developed liposome-based nanoparticles
that contain nanobodies specific to
surfactant-associated protein A to target
type 2 alveolar epithelial cells. The
nanobody-conjugated liposomes effectively
delivered methylprednisolone into type 2
cells during bleomycin-induced lung injury
in mice (146).

Nanoparticles Targeting
Pulmonary Endothelial Cells

Although intratracheal administration is an
attractive method to directly target lung
tissue, reaching the endothelial cell layer

from the air surface is more problematic
because this requires crossing the epithelial
barrier without unloading the therapeutic
cargo (147). Recent studies showed that
nanoparticles with transferrin were
transported in epithelial cells through
transcytosis, which is dependent on the
transferrin intracellular transport pathway
(148, 149), demonstrating a promising
strategy to overcome the epithelial barrier
on the way to reach endothelial cells. In
another study, silver core and titanium
dioxide nanoparticles were efficiently
transported through alveolar epithelial cells
(150). It was also shown that inhaled
nanoparticles were capable of translocating
from the air surface into pulmonary
circulation (151). These studies provide the
feasibility of transepithelial migration by
surface-functionalized nanoparticles to
target pulmonary endothelial cells in vivo.

Unlike respiratory epithelial cells,
endothelial cells are not exposed to the air
but line internal surfaces of arteries, veins,
capillaries, and lymphatic vessels. Therefore,
the endothelial cells can be directly reached
by the nanoparticles through blood
circulation. One of the advantages of
intravenous nanoparticle delivery to
endothelial cells is the absence of thick
mucus layers. Nanoparticle uptake by
endothelial cells can be controlled by
mechanical forces that are generated by
blood flow. Shear stress is critical for
nanoparticle uptake by endothelial cells
(152, 153). Optimizing the shape, size,
and charge of the nanoparticles leads to
successful targeting of endothelial cells
under shear stress conditions. Nanoparticle
uptake via endocytosis was increased by
blood flow in a PECAM-1 epitope-specific
manner (154, 155). Thus, the use of
PECAM-1 (CD31)-specific antibodies
in nanoparticle designs will increase
endothelial targeting under shear stress
conditions. However, as in any systemic
delivery, the first-pass metabolism and the
clearance by the kidney, intestine, and liver
result in undesirable offsite distribution of
the nanoparticles, leading to their reduced
local pulmonary concentrations. Therefore,
designing nanoparticles capable of
accumulating in the lung tissue becomes an
essential objective in intravascular delivery.
Physicochemical properties of the
nanoparticles, including charge and size,
are important for passive targeting of
endothelial cells, whereas specific ligands
and antibodies on nanoparticle surfaces are
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used for active targeting. After
internalization by endothelial cells, the
nanoparticles escape from endosomes
and release the payload of drugs, DNA
expression vectors, or RNAs (Figure 4A).

Passive Targeting of Pulmonary
Endothelial Cells by Nanoparticles
Dunn and colleagues developed several
formulations of cationic polyplexes
containing PEI, fatty acids, cholesterol,
and PEG (PEI/PEG) and demonstrated
an efficient targeting of pulmonary
endothelial cells (85–90%) after intravenous
administration to adult mice (79).
Nanoparticles were mostly detected in the
alveolar microvasculature but not in
nonendothelial cell types. The efficiency of
endothelial cell targeting was dependent on
the size and surface charge of PEI/PEG
nanoparticles. The nanoparticles with
diameters of 120 nm and z potential of
124 mV were found to be the most efficient
(79). Reversing the charge on PEI/PEG
nanoparticles abolished the endothelial cell
targeting (Figures 4B and 4C), suggesting
the critical role of positive charge in
endothelial uptake (79). The same
formulations of PEI/PEG nanoparticles
effectively delivered DNA expression
vectors to pulmonary endothelial cells of

newborn and juvenile mice (156, 157).
Interestingly, the PEI/PEG nanoparticles
mostly targeted capillary endothelial cells
but not endothelial cells of large blood
vessels (79). The passive targeting may be
compromised by a lack of specificity
because of nanoparticles interacting with
microvascular endothelial cells in many
organs of the body. However, because the
lung has dense microvascular networks, the
nanoparticle uptake in the lung tissue is
enhanced compared with other major
organs.

Nanoparticle delivery of
nonintegrating CMV-STAT3 expression
plasmid into systemic circulation increased
endothelial proliferation and stimulated
lung angiogenesis in the mouse model
of alveolar capillary dysplasia with
misalignment of pulmonary veins (141), a
severe congenital disorder caused by loss-
of-function mutations in the FOXF1
(forkhead box F1) gene (158–160). FOXF1
is a proangiogenic transcription factor that
is expressed in pulmonary endothelial cells
and the stroma (161–164). Nanoparticle
delivery of the FOXF1 gene can be an
attractive therapeutic option in respiratory
disorders because FOXF1 is critical for lung
angiogenesis (165, 166), tissue regeneration
(167–169), and lung repair after injury

(170–173). Consistent with this hypothesis,
nanoparticle delivery of either FOXF1
or its target gene, FOXM1, stimulated
neonatal lung angiogenesis and improved
lung function in the mouse model of
bronchopulmonary dysplasia, a severe
pulmonary disorder associated with
premature birth (142). FOXM1 is
proproliferative transcription factor
(174–176) that stimulates organ
regeneration and tissue repair after injury
(177–180) by acting downstream of the
RAS/ERK signaling pathway (181–183).
Another formulation of PEI/PEG
nanoparticles, which was stabilized by
cholesterol and C15 epoxide-terminated
lipids, has been shown to efficiently deliver
siRNA to mouse pulmonary endothelial
cells in vivo, disrupting the expression of
the Vegfr2 gene (also known as KDR and
Flk1) and causing emphysema in the lung
tissue (184).

In addition to size and surface charge,
efficiency of passive endothelial targeting is
dependent on the chemical composition of
nanoparticles. PBAEs were shown to have
an efficient endothelial uptake in the mouse
lung (185). Endothelial siRNA delivery was
recently achieved in nonhuman primates
using 7C1, a low–molecular-weight
ionizable polymer that forms nanoparticles
(186). Altogether, these published studies
demonstrated that the surface charge,
size, and chemical composition of
nanoparticles are critical for passive
targeting of pulmonary endothelial cells
after intravascular administration.

Active Targeting of Pulmonary
Endothelial Cells by Nanoparticles
In addition to physicochemical properties of
nanoparticles, the use of specific antibodies
and surface ligands can further improve
the endothelial-specific cell uptake
(Table 1). It was reported that the GALA
peptide specifically binds to the sialic
acid–terminated sugar chains that are
present on the surface of pulmonary
endothelial cells (187, 188). This feature
was used in a lipid-based nanoparticle
design for siRNA delivery to the lung
endothelium (189). Various molecules
on endothelial surfaces, known as the
“endothelial target determinants,” can be
targeted by nanoparticles (74). Some of
these molecules are regulated during
pathological processes, providing multiple
options for endothelial targeting in
pulmonary disorders (190). Using the

DNA Drug

Mesoporous Liposome Polyplexes

A B

Figure 3. Nanoparticle design strategies to target respiratory epithelium. (A) Therapeutic agents,
such as drugs and DNA vectors, are encapsulated into various nanomaterials to form the
nanoparticles with a desirable size, charge, and specific surface ligands. (B) The mucus layer and
macrophages are the main biobarriers eliminating nanoparticles with the large size, positive charge,
and mucus-interactive surface. Controlling the size, charge, the surface composition of nanoparticles
and using mucolytic agents are the main strategies to overcome these barriers and deliver the
therapeutic cargo to respiratory epithelium.
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Figure 4. Targeting of pulmonary endothelial (endo) cells by nanoparticle delivery systems. (A) Schematic diagram shows the nanoparticle delivery to
pulmonary endothelium through systemic circulation. The nanoparticles are internalized by pulmonary endo cells through the surface charge or specific
ligands (a). After endocytosis (b), the nanoparticles escape from prelysosomes and lysosomes (c) and release therapeutic agents (d). (B) The targeting
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LPS-induced lung injury model in
mice, Liu and colleagues reported that
the nanoparticles containing the ESBP
(E-selectin–binding peptide) are capable of
targeting vascular endothelial cells activated
by inflammatory stimuli (Table 1) (97).
Compared with nanoparticles without
ESBP, the accumulation of ESBP-modified
nanoparticles in the lung tissue was
significantly increased (97). EPHA2 (ephrin
type-A receptor 2) is expressed in
endothelial cells and is increased after
lung injury (95). Patil and colleagues used
the EPHA2 targeting ligand (the YSA
peptide) to produce PLGA nanoparticles,
demonstrating that the YSA peptide
improved the nanoparticle uptake by
human umbilical vein endothelial cells
in vitro (95). Furthermore, the YSA-
modified PLGA nanoparticles efficiently
targeted pulmonary endothelial cells after
bleomycin-induced lung injury (95).
Expression of ICAM-1 (intercellular
adhesion molecule 1) is increased in
pulmonary endothelial cells after acute lung
injury, and this property was used in
nanoparticle designs (191–193). Jiang
and colleagues used this strategy for
nanoparticle delivery of simvastatin and the
Ang-1 (angiopoietin-1) expression vector to
pulmonary endothelial cells during acute
lung injury induced by intratracheal
administration of LPS (191). A multilayer
nanostructure containing DNA strands and
psoralen crosslink with the ICAM-1
antibody was recently manufactured,
demonstrating excellent targeting of
endothelial cells in the mouse lung (192).

Nanoparticle-based delivery methods
were explored in pulmonary arterial
hypertension (PAH), a progressive vascular
disorder associated with loss of alveolar
capillaries and aberrant proliferation of
endothelial and smooth muscle cells in

pulmonary blood vessels (194, 195). PEG-
block-poly(e-caprolactone) nanoparticles
were generated and used to deliver
rapamycin in a monocrotaline-induced rat
model of PAH (196). The PEG-block-
poly(e-caprolactone) nanoparticles
accumulated in the lung tissue and
prevented PAH in rats (196). Active
targeting of pulmonary blood vessels in
monocrotaline-induced PAH has been also
reported by Li and colleagues (197). The
authors used glucuronic acid–modified
liposomes for sildenafil delivery to smooth
muscle and endothelial cells with increased
expression of GLUT-1 (glucose transporter-
1) (Table 1) (197). DNA triangular
nanoparticles containing ATG101 single-
stranded antisense RNA have been shown
to efficiently transduce human pulmonary
arterial endothelial cells in vitro (98).
Although the molecular mechanism by
which the DNA triangular nanoparticles
targeted pulmonary endothelial cells has
not yet been identified, this strategy was
effective in the regulation of endothelial cell
autophagy (98).

Nanoparticles Targeting
Pulmonary Smooth Muscle
Cells

Smooth muscle cells play important roles in
pathogenesis of pulmonary disorders such
as PAH and asthma. However, it is difficult
to target these cells with nanoparticles.
Glucuronic acid–modified liposomes were
recently developed to deliver sildenafil to
pulmonary artery smooth muscle cells
(PASMCs) in monocrotaline-induced PAH
in rats (197). Nanoparticle delivery of
sildenafil to smooth muscle cells was
achieved by targeting GLUT-1, effectively
inhibiting the proliferation and remodeling

of PASMCs in PAH. Gupta and colleagues
developed liposomal nanoparticles
for the delivery of fasudil to PASMCs
via intratracheal instillation. These
nanoparticles were taken up by PASMCs
because of their small sizes, which
enable the nanoparticles to escape
macrophage clearance (198). Intratracheal
administration of PLGA nanoparticles was
used to deliver imatinib to PASMCs in lung
tissue without significant accumulation of
the drug in other organs (199). Although
the PLGA nanoparticles with imatinib were
shown to regulate the proliferation of
smooth muscle cells in vivo, the molecular
mechanism of the nanoparticle uptake by
PASMCs has not been identified.

Nanoparticles Targeting
Pulmonary Macrophages

Pulmonary macrophages play an important
role in surfactant homeostasis,
inflammation, and immune responses
against bacteria and viruses, and therefore,
nanoparticle systems targeting macrophages
will facilitate the development of novel
therapeutic strategies for respiratory
disorders. Wang and colleagues designed
gold nanoparticles with a hexapeptide
coating to target alveolar macrophages on
the basis of their phagocytic properties
(200). Gold nanoparticles promoted
macrophage polarization to the
antiinflammatory M2 phenotype,
improving lung repair after LPS-induced
lung injury in mice (200).

Designing nanoparticles for active
macrophage targeting is still challenging
and requires further improvements. For
instance, some pathogens can escape
from immune surveillance by infecting
macrophages, and antibiotic delivery into

Table 1. Nanoparticle Designs for Active Targeting of Endothelial Cells

Lung disease Endothelial Cell Surface Molecules Nanoprticle and Targeting Ligands Reference

Normal lung Sialic acid–terminated sugar chains GALA peptide–modified lipid nanoparticle (187–189)
Acute lung injury E-selectin ESBP-modified BSA Nanoparticle (97)
Acute lung injury EPHA2 YSA peptide–modified PLGA nanoparticle (95)
Acute lung injury ICAM-1 ICAM-1 antibody–modified lipid nanoparticle (191)
Acute lung injury ICAM-1 ICAM-1 antibody–modified DNA nanoparticle (192)
Acute lung injury ICAM-1 ICAM-1 antibody–modified polymeric nanoparticle (193)
Pulmonary arterial hypertension GLUT-1 GlcA-modified liposomes (197)

Definition of abbreviations: EPHA2=ephrin type-A receptor 2; ESBP= E-selectin–binding peptide; GALA=GALA peptide (WEAALAEALAEALAEHLAEALAEALEALAA);
GlcA=glucuronic acid; GLUT-1= glucose transporter-1; ICAM-1= intercellular adhesion molecule 1; PLGA=poly lactide-co-glycolide; YSA=YSA peptide
(YSAYPDSVPMMS).
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macrophages can be deployed to eradicate
intracellular pathogens. Wang and
colleagues developed nanoparticles
responsive to reactive oxygen species for
antibiotic delivery (201). The nanoparticles
were functionalized with the folic acid
ligand, which interacts with the folate
receptor on the surface of macrophages.
Their approach showed efficient
macrophage targeting in vivo using a
mouse model of lung injury induced by
Pseudomonas aeruginosa (201). In addition
to macrophage targeting via folic acid
ligand, the nanoparticles can be rendered
sensitive to increased reactive oxygen
species concentrations and triggered to
release antibiotics on sites of active lung
inflammation. An additional example of
active macrophage targeting is the use
of the mannose functionalization in
nanoparticles. Mannose interacts with the
mannose receptor (CD206) on the surfaces
of macrophages (202, 203). Truzzi and
colleagues developed the inhalable lipid
nanoparticles with a mannose-based
surfactant on their surfaces to deliver
rifampicin, efficiently inhibiting
Mycobacterium tuberculosis infection in
alveolar macrophages (204). A similar
mannose-based targeting study was
reported by Costa and colleagues, showing
a significant uptake of mannose-containing
nanoparticles by macrophages in vitro
(205).

Nanoparticles Targeting
Pulmonary Fibroblasts

Idiopathic pulmonary fibrosis (IPF) is a
chronic pulmonary disorder characterized
by aberrant activation of fibroblasts and
excessive production of a collagen-rich

extracellular matrix in the lung tissue (206,
207). Nanoparticles targeting pulmonary
fibroblasts were recently developed for
potential IPF treatment. Glycol chitosan
nanoparticles efficiently transduced
primary human fibroblasts isolated from
IPF lungs (208). The uptake of chitosan
nanoparticles by fibroblasts was dependent
on collagen concentrations in the
extracellular matrix, suggesting that
physical interactions between collagen and
fibroblasts accelerate the nanoparticle
uptake (208). To develop a highly efficient
nanocarrier for protein delivery into
pulmonary fibroblasts, Zhang and
colleagues synthesized zwitterionic
chitosan-based particles to deliver
antifibrotic msFGFR2c protein into human
lung fibroblasts in vitro and in vivo (209).
After intratracheal administration to
bleomycin-treated rats, the nanoparticles
efficiently targeted pulmonary fibroblasts,
decreasing a-SMA expression, inhibiting
pulmonary inflammation, and decreasing
lung fibrosis (209). Recently, Kim and
colleagues developed a nanoparticle
delivery system containing polymeric
antisense oligonucleotides and DhBD23
(dimeric human b-defensin peptide) (210).
These nanoparticles decreased Tgfb mRNA
in mouse lung fibroblasts in vitro and
demonstrated highly selective accumulation
in lungs of mice treated with bleomycin
(210). Although the identity of targeted
cells in the lung tissue remains
incompletely understood, both DhBD23
and polymeric antisense oligonucleotides
were needed to stabilize the nanoparticles
for lung-specific delivery. Hyaluronic
acid (HA), which binds to CD44, a
receptor critical for fibroblast activation,
was used to target pulmonary fibroblasts
(211). Liposomal nanoparticles were

modified to include HA for the purpose
of creating fibroblast-targeting nanoparticles.
It was found that HA increased the
internalization of nanoparticles by human
lung fibroblasts isolated from patients with IPF
and bronchiolitis obliterans syndrome (212).

Simultaneous Targeting of
Several Respiratory Cell
Types by Nanoparticles

In addition to the cell-specific nanoparticle
delivery systems described above, several
formulations of nanoparticles have been
designed to increase their accumulation
in the lung tissue without targeting a
specific pulmonary cell type. A typical
example of these nanoparticles is the
phosphatiosomes, which were used in
mouse and rat models of acute lung injury
caused by intratracheal administration
of LPS (213). The mechanism of lung-
selective targeting via phosphatiosomes
is based on the interaction between the
phosphatidylcholine on the surface of
the nanoparticles and the pulmonary
surfactant, causing the aggregation of
nanoparticles in the lung but not in other
tissues (213). Nanoparticles guided by the
magnetic field represent a promising
strategy for organ- or region-selective
targeting, including in lung regions
with pathological changes identified by
computed tomography or magnetic
resonance imaging. Price and colleagues
synthesized the superparamagnetic iron
oxide nanoparticles that were guided by
an external magnet after intratracheal
administration in mice, successfully
accumulating in the left lung lobe (Figure 5)
(99). The use of magnetic-sensitive
nanoparticles in pulmonary diseases was
also supported by other studies. Reczyńska
and colleagues applied the fatty acid–based
iron oxide nanoparticles to successfully
target lung cancer cells (214).

Nanoparticle Delivery
Systems in Clinical Trials

Several nanoparticle delivery systems have
been used in clinical trials to develop new
therapeutic approaches for respiratory
disorders. Clinical trials in patients with
lung cancer have been recently reviewed
(215, 216). Examples of lung cancer clinical
trials include the polymeric nanoparticles

Magnetically-targeted
to the left lung

Nano-in-Microparticle

Trachea

Right lung Left lung

1-5 m

Figure 5. The magnetic field guide targeting. The nano-in-microparticles are accumulated in the left
lung lobe after the magnetic field guide targeting (99). Reprinted by permission from Reference 99;
further permissions related to the material excerpted should be directed to the American Chemical
Society.
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CRLX101 containing camptothecin,
(clinicaltrials.gov, identifier: NCT01380769),
the BIND-014 nanoparticles with
docetaxel (NCT01792479), the albumin-
stabilized nanoparticles with paclitaxel
(NCT00077246), and the NC-6004
micellar nanoparticles with cisplatin
(NCT02240238). All nanoparticle
formulations for patients with lung cancer
were administered intravenously. In
contrast, clinical trials for nonmalignant
respiratory disorders mostly use the
inhalation or intranasal route to deliver
therapeutic agents encapsulated into
nanoparticles (Table 2). Inhaled liposomal
nanoparticles with amikacin (amikacin
liposome inhalation suspension) were
employed to develop novel therapeutic
approaches for patients with bronchiectasis
(NCT00775138), chronic Pseudomonas
aeruginosa infections (NCT01315678),
Mycobacterium abscesses (NCT03038178),
and nontuberculosis mycobacteria infections
(NCT01315236). In patients with
mycobacteria infections, liposomal amikacin
improved the sputum conversion and the
lung function while showing limited
systemic toxicity (217). Furthermore,
liposomal nanoparticles with amikacin
demonstrated tolerability, safety, and efficacy
in patients with cystic fibrosis and a
Pseudomonas aeruginosa infection (218).

Inhaled liposomal nanoparticles with
amphotericin B (AmBisome) were tested in
patients with allergic bronchopulmonary
aspergillosis (NCT02273661) and invasive

pulmonary aspergillosis (NCT00391014),
whereas liposomal nanoparticles with
cyclosporine A were used to develop new
therapy for bronchiolitis obliterans
syndrome in lung transplant patients
(NCT01650545). The inhalation of
liposomal cyclosporine A was well tolerated
and improved the lung function in lung
transplant recipients without evidence of
systemic toxicity (219). Although inhaled
cyclosporine did not change the rate of
acute rejection after lung transplantation,
the cyclosporine treatment significantly
improved survival and extended periods of
rejection-free survival in lung transplant
recipients (220). Intranasal delivery
of liposomal nanoparticles with the
CFTR (cystic fibrosis transmembrane
conductance regulator) expression vector
has been performed in a phase 1 clinical
trial in patients with cystic fibrosis
(NCT00004806). However, phase 2 and 3
clinical trials are yet to be performed for
CFTR gene therapy. Recently, CAL02
nanoparticles, which consist of liposomes
that capture bacterial toxins, were used
intravenously to develop a therapy for
severe pneumococcal pneumonia, showing
a promising safety profile, tolerability, and
efficacy to neutralize bacterial toxins (221).
On the basis of outcomes of clinical trials
and preclinical studies in experimental
animals, additional nanoparticle carriers
are currently being designed and tested to
deliver DNAs, RNAs, antibiotics, peptides,
and various small molecule compounds,

showing a promise for human respiratory
disorders.

Future Perspectives

Multiple nanoparticle carriers are capable of
delivering therapeutics to the lung tissue.
However, there are critical issues to be
addressed before clinical applications can be
used. Although the passive targeting
increases the accumulation of nanoparticles
in the lung tissue, the uptake of the
nanoparticles is not specific. Although active
targeting is based on cell-specific markers,
the availability and specificity of these
biomarkers is limited. The molecular
mechanisms through which the
nanoparticles enter the cell and unpackage
to release therapeutics should be carefully
identified. This is particularly important for
the design and engineering of nanoparticles
with synergistic targeting strategies.
Nanoparticles with multifunctionalities,
which are based on “smart structures”
using new biochemical and biophysical
properties, are still rapidly evolving.
Future research should be focused on
the fundamental understanding of the
bio–nano interfaces and on the unique
functions of nanoparticle carriers in a
clinical setting. For instance, a nanoparticle
can function as a tool for both the
diagnostic and the therapeutic at the same
time if designed appropriately. High-quality
medical imaging has already been achieved

Table 2. Liposomal Nanoparticles Used in Clinical Trials to Develop Therapies for Patients with Nonmalignant Respiratory Disorders

Administration
route Nanoparticle/Cargo Disease/Condition NCT Number Phase References

Inhalation Liposomal amikacin (ARIKAYCE) Mycobacterium infection NCT03038178 2 (222)
Inhalation Liposomal amikacin (ARIKAYCE) Mycobacterium infection NCT01315236 2 (217)
Inhalation Liposomal amikacin (ARIKAYCE) Pseudomonas aeruginosa infection NCT01315678 3 (223)
Inhalation Liposomal amikacin (ARIKAYCE) Bronchiectasis NCT00775138 2 clinicaltrials.gov
Inhalation Liposomal amikacin (ARIKAYCE) Cystic fibrosis NCT03905642 2 clinicaltrials.gov
Inhalation Liposomal amikacin (ARIKAYCE) Cystic fibrosis NCT01316276 3 clinicaltrials.gov
Inhalation Liposomal amikacin (ARIKAYCE) Cystic fibrosis NCT00777296 1/2 (218)
Inhalation Liposomal amikacin (ARIKAYCE) Cystic fibrosis NCT00558844 1/2 (218)
Inhalation Liposomal amphotericin B

(Ambisome)
Allergic bronchopulmonary
aspergillosis

NCT02273661 2 clinicaltrials.gov

Inhalation Liposomal cyclosporine A Bronchiolitis obliterans NCT01650545 1/2 clinicaltrials.gov
Inhalation Liposomal amphotericin B

(Ambisome)
Invasive pulmonary aspergillosis NCT00391014 2 clinicaltrials.gov

Intravenous CAL02 liposome Pneumonia pneumococcal
infections

NCT02583373 1 (221)

Intranasal Liposome/pGT-1 gene Cystic fibrosis NCT00004471 1 clinicaltrials.gov
Intranasal Liposome/CFTR gene Cystic fibrosis NCT00004806 1 clinicaltrials.gov

Definition of abbreviations: ARIKAYCE=amikacin liposome inhalation suspension; CFTR=cystic fibrosis transmembrane conductance regulator;
NCT=National Clinical Trial.
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using fluorescent and superparamagnetic
nanoparticles, which can also carry
therapeutic agents to the site of imaging.
There have been a variety of “on-demand”
triggering mechanisms developed for
nanoparticle carriers. These include pH
sensitivity, temperature control, light
sensitivity, and chemical differences
between the intracellular and extracellular
environment, all of which can be used in
future nanoparticle design to overcome the
biobarriers. Synergic therapies, which are
based on the simultaneous delivery of
multiple therapeutic agents via nanoparticle
delivery systems, provide an attractive
future direction for clinical management
of lung diseases. A codelivery system,
consisting of the drug and the gene product
encapsulated into the same nanoparticles,
can address some complex therapeutic
needs. In preclinical and clinical studies,
biocompatibility and toxicity of the
nanoparticles remain major challenges that

will have to be addressed jointly by
collaborations between engineers, chemists,
and biomedical researchers.

Summary

The advancements in nanomaterials have
provided vast therapeutic opportunities for
life-threatening respiratory disorders. To
overcome several key barriers in drug
administration for pulmonary diseases,
versatile nanoparticles have been designed
and synthesized for a variety of therapeutic
needs. Nanoparticle-based carriers can
efficiently deliver antibiotics, nonintegrating
DNA expression vectors, stabilized mRNAs,
siRNAs, and small molecular compounds to
the lung tissue in a cell-specific manner. The
pulmonary administration of nanoparticles
via the intratracheal route avoids systemic
clearance and provides high onsite
concentration and specific targeting of

respiratory epithelial cells and
macrophages. The intravenous
administration of nanocarriers is
extensively applied to target pulmonary
endothelial cells and achieve lung tissue
accumulation. Pulmonary and systemic
delivery routes have been used to target
other respiratory cell types, such as
fibroblasts and smooth muscle cells.
Specific receptors and adhesion molecules
on the cell surface of nanoparticles
provide additional possibilities for cell-
specific targeting strategies in pulmonary
disorders. A variety of nanoparticles have
now been designed and synthesized to
improve the delivery of therapeutic
agents to pulmonary tissues, providing
innovative therapeutic approaches
for treatment of human respiratory
disorders. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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