Abstract: The US highway system features a huge flux of energy transportation in terms of weight, speed, volume, flow density, and noise levels, with accompanying environmental effects. The adverse effects of high-volume traffic cause health concerns for nearby residential areas. Both chronic and acute exposure to PM 2.5 have detrimental effects on respiratory and cardiovascular health, and motor vehicles contribute 25–35% of direct PM 2.5 emissions. In addition to traffic-related pollutants, residing near major roadways is also associated with exposure to increased noise, and both affect the health and quality of life of residents. While regulatory and policy actions may reduce some exposures, engineering means may offer novel and significant methods to address these critical health and environmental issues. The goal of this study was to harvest highway-noise energy to induce surface charge via a piezoelectric material to entrap airborne particles, including PM 2.5. In this study, we experimentally investigated the piezoelectric effect of a polymethyl methacrylate (PMMA) sheet and ethylene propylene diene monomer (EPDM) rubber foam on the entrapment of copper (II)-2,4-pentanedione powder (Cu II powder). Appreciable voltages were induced on the surfaces of the PMMA via mechanical vibrations, leading to the effective entrapment of the Cu II powder. The EPDM rubber foam was found to attract a large amount of Cu II powder under simulated highway noise in a wide range, of 30–70 dB, and at frequencies of 700–1300 Hz, generated by using a loudspeaker. The amount of Cu II powder entrapped on the EPDM rubber-foam surfaces was found to scale with the SPL, but was independent of frequency. The experimental findings from this research provide a valuable base for the design of a robust piezoelectric system that is self-powered by harvesting the wasted sound energy from highway noise and reduces the amount of airborne particles over highways for effective environmental control.

Keywords: piezoelectric; highway noise; particle entrapment; sound energy

1. Introduction

Road traffic is a major source of airborne PM 2.5 (particles <2.5 µm in size) and noise pollution, both of which are recognized contributors to cardiovascular and other adverse health effects [1]. The association between road-traffic noise and public health has become increasingly evident, especially during the last decade [2]. For instance, the increase in weighted noise level 10 dB(A) within the range of approximately 52–77 dB(A) results in an...
8% increase in the risk of cardiovascular diseases [3]. There is a 3% increase in the prevalence of hypertension per 5 dB(A) increase in the noise range of 45–75 dB(A) [3,4]. Additionally, residential traffic noise has the potential to worsen related depressive symptoms [5], mental disorders [6], and insomnia [7]. Furthermore, the PM 2.5 is causally associated with cardiovascular and respiratory health outcomes and co-exposures to both PM 2.5 and noise may have synergistic health effects. Approximately 11.3 million people (or 3.7% of the US population) live within 150 m of major highway infrastructures, placing them at risk for increased exposure to traffic air pollution and associated adverse health outcomes [8]. Time-series analyses suggest that exposure to PM 2.5 has detrimental effects on respiratory health, and motor vehicles contribute from 25% to 35% of direct PM 2.5 emissions [9–16]. Infants or elementary students at schools near heavy transportation infrastructures are particularly susceptible to such air pollutants [17–19].

Exposure to traffic pollution has been associated with adverse health effects, including pulmonary, neurological, and cardiovascular mortality and morbidity [20,21]. Specifically, exposure to traffic-related airborne particles (TRAP) has been associated with the exacerbation of existing asthma and the incidence of asthma among young and adolescent children [18,22,23]. In a previous community-based study in Cincinnati, we observed significant associations between the estimated TRAP exposure and adverse respiratory outcomes in children, including early childhood wheezing, persistent wheezing through age 7, and the development of asthma by age [7,17,24]. The threat from COVID-19 is even more alarming as the severity of COVID-19 infection has been associated with increased PM 2.5 exposure [25–28]. This interaction can occur either directly, by compromising the lungs’ immune response to the infection, or indirectly, by exacerbating underlying respiratory or cardiovascular diseases [28].

Sound is typically characterized in terms of two main properties: frequency and intensity. The frequency of sound is the objective measure of its pitch (subjective measure). Cars produce noises in the range of 50 to 5000 Hz, while trucks produce noises in the range of 10 to 1000 Hz. In both cases, the typical noise distribution has a broad intensity peak at about 1250 Hz and a broad perceptual peak at about 500 Hz [29]. Noise barriers are designed to block the sound waves in the propagation path from the source to the receiver. The Environmental Impact Assessment and Noise Impact Assessment determined the types of noise barrier, such as reflective noise barriers, absorptive noise barriers or a combination of both [29]. Improving the acoustic performance of a vertical barrier without increasing its height has long been a challenge to the acoustic engineer. The pure reflective types, even with optimal morphological design and parametric analysis, are still not able to resolve this challenge. Based on a literature review, potential solutions can be classified into three types—absorptive, angled, and capped barriers. The notable developments include vegetation barriers [30,31], parallel noise barriers [16], barriers with absorbent/soft/reactive surfaces [32], diffusive noise barriers [33], T-shaped barriers [34], and other hybrid barrier profiles combined with T-, Y-, and inclined types [35–42].

The dispersion of pollutants from traffic emissions has been shown to be affected by near-road obstacles, such as noise barriers, buildings, and vegetation [43–45]. Depending upon the roadway–barrier configuration, concentration deficits of 50% or more have been observed relative to a reference roadway configuration in the absence of a barrier [17]. Previous studies showed that noise barriers can lead to an upward deflection of airflow caused by the structure. Thus, these barriers could increase the apparent release height of the pollutant, leading to more vertical mixing due to the flow separation at the top of the barrier [46–50]. More importantly, as a huge flux of transport energy in terms of weight, speed, volume, and noise, highway systems generate vast amounts of wasted energy due to inefficient consumption, particularly through large-sized-engine vehicles. The energy from both audible noise and the high flux of heavy-vehicular traffic flows is not only entirely wasted, but also results in traffic-related pollution and adverse health effects.

It is possible to address these critical issues by harvesting highway-noise energy and converting it to electricity via a piezoelectrical material with unique structures. The
piezoelectric effect results from the imbalance of the ionic crystal-lattice-based electric dipole moments under mechanical deformation \[51,52\]. Upon mechanical-pressure-induced deformation, the electric dipole moments are induced for ions on crystal-lattice sites with asymmetric charge surroundings. The noise from highways is a mechanical wave with an oscillation of pressure traveling through a medium. When the sound waves encounter the piezoelectric material with sufficient vibrations, surface charges can be developed on the piezoelectric materials. There are considerable studies on harvesting environmental noise for energy generation. Piezoelectric devices and sensors have been placed within highway structures to harvest noise energy, with significant successes \[53\]. Field-traffic and sound measurements can be collected in time intervals with the peak hour factor (PHF) to reflect the characteristics of traffic flow. Highway noise is generated from motor vehicles of various sizes and weights, contributing to a spectrum of collective sound energy with an average frequency of road noise of around 1000 Hz \[29\].

Previous research has mainly concentrated on the areas of noise harvest for energy generation and noise monitoring using piezoelectric materials and devices. No research has been carried out to investigate the possibility of capturing the airborne particles emanating from motor vehicles by using piezoelectric filters. Further, questions remain as to the level of noise that is sufficient to generate enough surface charge for the entrapment of airborne particles of different dimensions, distributions, and weights. In this study, we experimentally investigated the piezoelectric materials of a polymethyl methacrylate (PMMA) sheet and ethylene propylene diene monomer (EPDM) foam for the entrapment of copper (II) 2,4-pentanedionate (Cu II particles) under sound waves of different decibels (dB) and frequencies. Both PMMA and EPDM are known piezoelectric materials with piezoelectric coefficients \(d_{33}\) of 0.276 pC/N and 1.658 pC/N, respectively. The chosen sound frequencies and decibels are within the range of highway noise levels. Cu II particles are significantly larger and heavier than typical PM 2.5 particles; this allowed us to establish the baseline for the entrapment of most of the airborne particles in terms of size and weight. If a piezoelectric material vibrates in response to highway noise, depending upon the level of vibration, surface charges can be generated that are proportional to the level of noise (in decibels). Most of the airborne particles are surface-charged under various conditions \[54–56\]. The surface-charged piezoelectric material can therefore electrostatically entrap the airborne particles, including various harmful airborne pollutants, emitted from traffic, such as PM 2.5.

2. Experimental Details

We chose polymethyl methacrylate (PMMA) for the initial particle entrapment. PMMA is a type of piezoelectric material that can convert mechanical energy to electricity (and vice versa) \[57\]. PMMA is strong, tough, transparent, lightweight, and inexpensive. The density of PMMA is 1.20 g/cm\(^3\), which is less than half that of glass, but with much higher impact strength. PMMA is inherently UV-resistant due to its molecular stability. In this study, we used a commercial transparent PMMA sheet with a thickness of 0.15 mm as the piezoelectric material to test the surface charge generated at different sound levels and frequencies.

Figure 1 shows the experimental set-up to generate surface charge on PMMA surfaces by a vibration motor (VM). The measurement path is also included in this figure. Commercial DC 3.0V Micro Coin Vibration Motor (VM) was used in this experiment, which can provide a vibration force of 0.6 g @100 g, drawing less than 80 mA. A DC power supply (HEWLETT PACKARD, E3612A, 60 V, 0.5 A or 120 V, 0.25 A) was used to drive the VM at various voltages (1 V, 2 V, 3 V, 4 V, and 5 V), and corresponding vibrations were recorded by an accelerometer (cell-phone software, VibSensor, was used to measure the acceleration). As shown in Figure 1, five PMMA sheets of 2.54 × 2.54 cm\(^2\) were stacked in parallel and fixed tightly with adhesive tapes at four edges. Before each measurement, the mass of the clean sample (five layers of PMMA sheets) was weighed. The sample was laid horizontally on the VM (Figure 1). The DC power supply was turned on by increasing the
power-supply input voltage to a constant value at 1 V, 2 V, 3 V, 4 V, and 5 V. The voltage generated by piezoelectric material across the two outer PMMA surfaces was measured by closely attaching two parallel copper tape plates on both sides of the sample, as electrodes that were connected to the Keithley 2400.

To simulate the airborne particles, we selected copper (II)-2,4 pentanedionate powder (Cu II powder) for the entrapment experiments. Copper II is used as a catalyst for carbene transfer reactions, coupling reactions, and Michael addition reactions. It is also used as a catalyst for polymerization of olefins and transesterification reactions, as well as a PVC stabilizer. Cu II has a molecular weight of 261.76, which is extremely light, and it is easily absorbed by surface charges created by piezoelectric materials under slight vibrations. The scanning electron microscopy of Cu II particles is shown in Figure 2. As shown in this figure, the Cu II particles exhibit column-like structures, with high aspect ratios. The maximum length of the long axes of the particles was >10 µm. To capture particles of this size, substantial surface charge needed to be induced by the strong piezoelectric effect of the materials. Experiments based on the Cu II powder ensure effective absorption of airborne PM 2.5 particles, which are much smaller and lighter.

Figure 1. Experiment setup for measuring surface charge and trapped Cu II particles on PMMA.
The PMMA sheets were placed in the set-up, as shown in Figure 1, and the VM was turned on to generate the vibration, whose magnitude was represented by maximum acceleration (m/s²) at a given voltage (1–5 V). Figure 3 shows the maximum acceleration of the vibration generated by the VM at different voltages: 1 V, 2 V, 3 V, 4 V, and 5 V. As shown in Figure 3a,b, the maximum acceleration of the vibration was rather low; it was below 0.1 m/s² when the applied voltage of the vibration motor was 1 V (0.037 m/s²) and 2 V (0.051 m/s²). The maximum acceleration of vibration increased to 0.36 m/s² at 3 V (Figure 3c), to 0.45 m/s² at 4 V (Figure 3d), and to 0.48 m/s² at 5 V (Figure 3e), respectively. It should be noted that there was a sharp peak around 14 s at 4 V (Figure 3d), which was disregarded as an anomaly from the background, since it was not sustained enough to affect the particle entrapment.

Figure 4 shows the maximum acceleration vs. the input voltage (Figure 4a), the voltage generated on the PMMA surface vs. the maximum acceleration (Figure 4b), the charge generated on the PMMA surface vs. the maximum acceleration (Figure 4c), and the mass of the trapped Cu II powder on the PMMA surface vs. the voltage. The inset presents a schematic of the Cu II powder attracted on the vertical PMMA surfaces. As shown in Figure 4a, the vibration energy, as indicated by the maximum acceleration, was controlled well by the applied voltage, which could be used to scale with the highway noise level. Due to the piezoelectricity, the vibration induced surface voltage on the PMMA surfaces, as shown in Figure 4b. This figure also shows that the surface voltage induced by the vibration remained quite low, below 10 mV, at the maximum acceleration of the vibration of 0.36 m/s², which appeared to be a threshold value beyond which the induced voltage rapidly increased, up to 981 mV (Figure 4b). The related surface charge as a function of the maximum acceleration of the vibration is shown in Figure 4c. It was calculated based on the surface voltage, Q = CV, where Q is the surface charge, C is the capacitance, and V is the voltage. The capacitance is given by C = kε₀A/d, where k is the dielectric constant of PMMA, ε₀ is the permittivity of the vacuum, A is the surface area of the PMMA (two outer surfaces), and d is the total thickness of the PMMA. The charge generated by the PMMA sheets was 4.1 × 10⁻¹⁸ C, 9.2 × 10⁻¹⁸ C, 9.2 × 10⁻¹⁷ C, 1.56 × 10⁻¹⁶ C, and 3.36 × 10⁻¹⁶ C for 1 V, 2 V, 3 V, 4 V, and 5 V, respectively, as shown in Figure 4c.
The PMMA sheets with the electrostatically captured powder were weighted using Cole-Parmer Symmetry LA-225.C Analytical Balance to account for the Cu II particles that remained on the two outer surfaces (Figure 4d). As shown in Figure 4d, the mass of the Cu II powder adhered on the PMMA surfaces increased with the input voltage of the VM, reaching 60 mg, at 5 V.

The PMMA sheets were placed in the set-up, as shown in Figure 1 and the VM was turned on for 30 s to generate the surface charge at a given voltage (Figure 4b). The VM power supply was then turned off (after 30 s), and the Cu II powder was loosely sprinkled on both surfaces of the PMMA sheets. These PMMA sheets were then positioned vertically to observe the adhered powder on both sides due to the surface charge (inset of Figure 4d). The PMMA sheets with the electrostatically captured powder were weighted using Cole-Parmer Symmetry LA-225.C Analytical Balance to account for the Cu II particles that remained on the two outer surfaces (Figure 4d). As shown in Figure 4d, the mass of the Cu II powder adhered on the PMMA surfaces increased with the input voltage of the VM, reaching 60 mg, at 5 V.

Figure 3. Acceleration of vibration generated by different voltages: (a) 1 V, (b) 2 V, (c) 3 V, (d) 4 V, and (e) 5 V.

The PMMA sheets were placed in the set-up, as shown in Figure 1 and the VM was turned on for 30 s to generate the surface charge at a given voltage (Figure 4b). The VM power supply was then turned off (after 30 s), and the Cu II powder was loosely sprinkled on both surfaces of the PMMA sheets. These PMMA sheets were then positioned vertically to observe the adhered powder on both sides due to the surface charge (inset of Figure 4d). The PMMA sheets with the electrostatically captured powder were weighted using Cole-Parmer Symmetry LA-225.C Analytical Balance to account for the Cu II particles that remained on the two outer surfaces (Figure 4d). As shown in Figure 4d, the mass of the Cu II powder adhered on the PMMA surfaces increased with the input voltage of the VM, reaching 60 mg, at 5 V.
Cu II powder adhered on the PMMA surfaces increased with the input voltage of the VM, reaching 60 mg, at 5 V.

Figure 4. (a) Maximum acceleration generated by different input voltages, (b) voltage generated vs. maximum acceleration of different voltages, (c) charge generated vs. maximum acceleration of different voltages, (d) mass of trapped Cu II powder vs. voltage. Inset: Schematic of Cu II powder adhered on the vertical PMMA surfaces.

Figure 5 shows the photographs of the PMMA sheets with the surface-trapped Cu II powder at different VM input voltages, as indicated. As can be seen in this figure, at low vibration (maximum acceleration), the particles adhered on the surfaces were limited (1–3 V), but at 5 V, a substantial amount of Cu II powder was entrapped on both the outer surfaces of the PMMA sheets, indicating the strong electrical voltages/charges generated by the piezoelectric effect of the PMMA.

Figure 5. Photographs showing adhered Cu II powder on the PMMA surfaces at different input voltages.
Figure 5 shows the significant electric field on the PMMA surfaces generated by a vibrating motor. However, to entrap the airborne particles via traffic noise, the surface charge on the PMMA surfaces had to be generated directly from sound waves with decibels and frequencies comparable to those of a highway. Levels of highway traffic noise typically range from 70 to 80 dB(A) 15 m from highways. Depending upon the size of the vehicles, the highway-noise spectral content is typically dominated by frequencies from 500 to 1000 Hz.

To simulate a more realistic situation for noise-generated surface charge via a piezoelectric material, an experiment was set up for particle capture, as shown in Figure 6, along with the measurement path. A loudspeaker was used to simulate a background noise in a wide range of frequencies and sound pressure levels (SPL). The required frequencies (700–1300 Hz) were generated by a sound-frequency online tone generator. A JBL Cinema 510 5.1 Home Theater Speaker System with a subwoofer (sound source) was connected to a Yamaha 5.1 Channel 4K Ultra HD A/V home-theater receiver. The sound generated was measured and analyzed by cell-phone software called Sound Spectrum Analysis.

For capturing the airborne particles, instead of the PMMA sheets used in the VM vibration experiments, we employed ethylene propylene diene monomer (EPDM) rubber-foam sheets. Ethylene-propylene diene monomer (EPDM) rubber is an excellent sound-absorbing material due to the long-chain structure of the polymer [58]. EPDM also exhibits excellent thermal, mechanical, and electrical properties for a variety of engineering applications [59–62]. EPDM foam has a porous structure that is ideal for the entrapment of airborne particles. Its elastic characteristic enable the efficient absorption of sound waves and conversion to electrical charge on the surfaces.

The EPDM foam sheet was suspended in midair (Figure 6). A Sound Monitor dB Meter (VLIKE LCD Digital Audio Decibel Meter) was positioned adjacent to the EPDM foam sheet that registered the SPL from the sound sources. The distance and the sound
The mass of the trapped Cu II particles was determined under SPL of 30, 40, 50, 60, and 70 dB (referring to sound power intensities of 1, 10, 100, 1000, and 10,000 nW/m², respectively) at a given SPL, the mass of the captured powder was also determined at various frequencies (700, 800, 900, 1000, 1100, 1200, and 1300 Hz).

Figure 7a shows the mass of the trapped Cu II particles as a function of the SPL at all frequencies (700–1300 Hz). At 900 and 1000 Hz, the amounts of the trapped Cu II particles were the highest, approaching 800 mg, much higher than those recorded using the vibrating motor (VM), as shown in Figure 4d. It was noted that the highway-noise frequency was around 1000 Hz, which was the optimum range tested in this experiment. Figure 7b shows the masses of the Cu II particles trapped as a function of frequency for different levels of SPL. Quite consistently, in a wide frequency range, between 700 Hz and 1300 Hz, the masses of the trapped Cu II particles were highest at 70dB. These relationships (Figure 7) show the pronounced piezoelectric effect of the EPDM foam sheets, indicating an ideal material candidate for making sound-absorbing and airborne particle-trapping filters for highways. Figure 8 shows the photographs of the EPDM foam sheet with the surface-entrapped Cu II particles (blue color) at different SPL. As shown in this figure, consistent with Figure 7a,b, the amount of Cu II particles increased with increasing SPL, as expected.

![Figure 7](image_url)

Figure 7. (a) Mass of captured Cu II particle vs. SPL of different frequencies, (b) mass of captured Cu II particle vs. frequency of different SPL.

![Figure 8](image_url)

Figure 8. Cu II particles entrapped on the EPDM foam sheet after sound vibration under different SPL (the black box in the background is the loudspeaker).
4. Discussion

There have been extensive studies on airborne-particle captures using various methods. One option to improve the efficiency of mechanical filters is to add electrical charges to the filter material. Examples of these are electret or triboelectric filters. These filters have shown some efficient particle-trapping results, but their efficiency varies with the particle size. Electret filters have been widely used for the filtration of air particles. Since most airborne particles are electrically charged, the capturing mechanism has been typically based on electrostatic interaction. Romay, Liu, and Chae reported on commercially available fibrous electret filters: corona-charged fibrillated split-fiber media, triboelectrically charged mixed-fiber media, and corona-charged melt-blown media [63]. They measured the filtration efficiencies of these filters for different particle sizes and charge states.

Han developed a triboelectric filter for removing PM 2.5 from automobile exhaust fumes using the triboelectrification effect [64,65]. They found that the friction between PTFE (Polytetrafluoroethylene) pellets and electrodes can generate large triboelectric charges and form a space electric field as high as 12 MV/m. By controlling the vibration frequency and fill ratio of the pellets, over 94% of airborne PM 2.5 can be removed using the high electric field in the triboelectric filter. However, the triboelectric filter requires the mounting of the filter in the automobile exhaust system for sufficient mechanical vibrations. The system shown in this study can enable the harvesting of highway noise directly and with much greater sensitivity, making it much simpler, more effective, and more economically viable. In addition, the Cu II power particles are much heavier and larger than the PM 2.5 particles, showing strong electrostatic attraction force on the piezoelectric surfaces.

One of the critical issues in this proof-of-concept study was whether sufficient electrical charge can be generated to create strong enough electrostatic attraction to entrap the Cu II powders and other airborne particles. Although PMMA is a well-known piezoelectric material, the determination of the level of vibration required to generate sufficient surface charge (or voltage) was the first experimental step to be carried out. As shown in Figure 4, even with the small acceleration of vibration, appreciable surface voltages were induced, with a maximum approaching 1000 mV. Within the range of the surface voltage generated, a substantial amount of Cu II particles was captured by the PMMA up to 60 mg, which is quite significant. This correlation between the mechanical vibration/surface charge and the amount of Cu II particles on the PMMA established the baseline and feasibility of airborne entrapment via piezoelectric.

To simulate highway noise, a loudspeaker was employed to generate soundwaves instead of direct mechanical vibration. Sound is typically characterized in terms of two main properties: frequency and sound-pressure levels. For highway traffic, cars produce noise in the range of 50 to 5000 Hz, while trucks produce noise in the range of 10 to 1000 Hz. In both cases, the typical noise distribution has a broad intensity peak at about 1250 Hz and a broad perceptual peak at about 500 Hz [29]. The simulated sound waves used in this study were within the ranges of the highway noise levels (SPL: 30–70 dB, 1 nW/m², frequency: 700–1300 Hz). Successfully, even at the low-noise end of 30 dB in a wide frequency range of 700–1300 Hz, a substantial amount of Cu II powder above 300 mg was captured by the EPDM foam sheet (Figure 7a). The amount of Cu II powder linearly increased with the SPL, up to 800 mg, which is not dependent on frequency (Figure 7b). These experimental results show solid evidence of particle entrapment via sound-generated electrostatic charges using piezoelectric materials. It should be noted that nanoscale piezoelectric materials can be designed and developed with even more airborne particle entrapment.

Another application EPDM foam sheets is to absorb the highway noise in the propagation path from the source to the receiver while harvesting the sound energy for airborne-particle entrapment. EPDM is an excellent soundproofing barrier, especially when it is used on highway edges with high levels of noise. Therefore, EPDM may serve for two purposes: (1) as a sound-insulation barrier to reduce noise pollution, and (2) harvesting noise energy for the entrapment of airborne particles. The Environmental Impact Assessment and Noise Impact Assessment determined different types of noise barrier, such as reflective noise
barriers, absorptive noise barriers, or a combination of both [29]. Improving the acoustic performance of vertical barriers without increasing their height has long been a challenge for acoustic engineers. The pure reflective types, even with optimal morphological designs and parametric analysis, are still not able to resolve this challenge. The system designed in this study could potentially reduce noise levels by engineering the design of acoustic walls with piezoelectric sound absorbers, such as EPDM foam sheets. However, the design of this study is fundamentally different from those of traditional sound barriers, which simply block or reflect highway noise. The EPDM can be utilized to absorb the highway noise and convert the soundwave energy into surface charge via piezoelectricity for the more efficient entrapment of airborne particles of various weights and sizes, including PM 2.5. In this way, the wasted sound energy can be harvested for both noise and airborne-particle reduction.

5. Conclusions

In conclusion, we demonstrated the effective entrapment of Cu II particles by both PMMA and EPDM via the piezoelectric effect. Significant surface charge was generated via mechanical vibrations that enabled the capture of Cu II particles on the PMMA surfaces. The EPDM foam sheets were capable of entrapping Cu II particles effectively in the wide highway-noise ranges of SPL (30–70 dB), sound intensity (1–10^4 nW/m^2), and frequency (700–1300 Hz). The experimental outcomes obtained from this study provide the possibility of reducing highway airborne particles via simple piezoelectric materials. Novel nanoscale structures of piezoelectric materials can also be designed and developed for more efficient airborne-particle entrapment based on the physical principles developed in this study.

Author Contributions: Conceptualization, D.S.; Data curation, M.L. and S.V.T.; Formal analysis, D.S., M.L., S.V.T., H.W., J.W., T.A.R. and P.H.R.; Methodology, D.S., M.L. and S.V.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the University of Cincinnati CRA Track 1: PILOTS (Fund Number: D700315).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository.

Conflicts of Interest: The authors declare no conflict of interest.

References

27. Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [CrossRef] [PubMed]
Jahnhall, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. *Atmos. Environ.* 2015, 105, 130–137. [CrossRef]
Amini, S.; Ahangar, F.E.; Schulte, N.; Venkatram, A. Using models to interpret the impact of roadside barriers on near-road air quality. *Atmos. Environ.* 2016, 138, 55–64. [CrossRef]
Noh, J.S. Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters. *Polymers* 2016, 8, 123. [CrossRef]