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Abstract: Methods for automating relative fundamental frequency (RFF)—an acoustic estimate of
laryngeal tension—rely on manual identification of voiced/unvoiced boundaries from acoustic
signals. This study determined the effect of incorporating features derived from vocal fold vibratory
transitions for acoustic boundary detection. Simultaneous microphone and flexible nasendoscope
recordings were collected from adults with typical voices (N = 69) and with voices characterized
by excessive laryngeal tension (N = 53) producing voiced–unvoiced–voiced utterances. Acoustic
features that coincided with vocal fold vibratory transitions were identified and incorporated into
an automated RFF algorithm (“aRFF-APH”). Voiced/unvoiced boundary detection accuracy was
compared between the aRFF-APH algorithm, a recently published version of the automated RFF
algorithm (“aRFF-AP”), and gold-standard, manual RFF estimation. Chi-square tests were performed
to characterize differences in boundary cycle identification accuracy among the three RFF estimation
methods. Voiced/unvoiced boundary detection accuracy significantly differed by RFF estimation
method for voicing offsets and onsets. Of 7721 productions, 76.0% of boundaries were accurately
identified via the aRFF-APH algorithm, compared to 70.3% with the aRFF-AP algorithm and 20.4%
with manual estimation. Incorporating acoustic features that corresponded with voiced/unvoiced
boundaries led to improvements in boundary detection accuracy that surpassed the gold-standard
method for calculating RFF.

Keywords: relative fundamental frequency; high-speed videoendoscopy; voice assessment; laryn-
geal tension

1. Introduction

Excessive and/or imbalanced laryngeal muscle forces have been implicated in over
65% of individuals with voice disorders [1]. The specific pathophysiology of laryngeal
hypertonicity is a known characteristic of many functional, structural, and neurological
disorders, including adductor-type laryngeal dystonia [2,3], hyperfunctional voice disor-
ders (e.g., muscle tension dysphonia, nodules; [4]), and Parkinson’s disease [5]. Despite
this prevalence, current clinical voice assessments fall short in objectively quantifying the
degree of laryngeal muscle tension. For instance, auditory-perceptual judgments are a
gold-standard technique used to assess voice quality, but the reliability and validity of these
judgments remains questionable [6,7]. Likewise, manual laryngeal palpation techniques

Appl. Sci. 2021, 11, 3816. https://doi.org/10.3390/app11093816 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3869-8240
https://orcid.org/0000-0003-4230-905X
https://doi.org/10.3390/app11093816
https://doi.org/10.3390/app11093816
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11093816
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11093816?type=check_update&version=1


Appl. Sci. 2021, 11, 3816 2 of 24

can be useful for evaluating tension of the extrinsic laryngeal and other superficial neck
musculature; however, these methods do not assess the intrinsic laryngeal muscles and,
moreover, are subject to the skill and experience of the practitioner [8]. Much of the research
surrounding laryngeal hypertonicity has therefore turned to acoustic analyses, for which
data can be non-invasively collected via a microphone. Acoustic signals can provide insight
into characteristics of the glottal source (e.g., timing, frequency, and amplitude of vocal
fold vibration). To date, however, a single acoustic indicator specific to laryngeal muscle
tension has not been identified.

1.1. Relative Fundamental Frequency (RFF) as an Estimate of Laryngeal Muscle Tension

In recent years, relative fundamental frequency (RFF) has been suggested as an
acoustic indicator of laryngeal muscle tension. Estimated from short-term changes in
instantaneous fo during intervocalic offsets and onsets, RFF is a non-invasive, objective
measure that shows promise in estimating the degree of baseline laryngeal muscle tension.
RFF can be calculated from a vowel–voiceless consonant–vowel (VCV) production as in
Figure 1. The instantaneous fo of the ten voiced cycles preceding (“voicing offset”) and
following (“voicing onset”) the voiceless consonant are each estimated and normalized to
a steady-state fo of the nearest vowel ( f re f

o ) to produce an RFF estimate in semitones (ST):

RFF (ST)= 12× log2

(
fo

f re f
o

)
(1)
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Figure 1. Acoustic waveform of the vowel–voiceless consonant–vowel production, /ifi/. Voicing cycles preceding the
voiceless consonant, /f/, are marked as voicing offset cycles, whereas those following the /f/ are indicated as voicing onset
cycles. The first and tenth vocal cycles are highlighted for each transition.

Recent work exploring the clinical utility of RFF for assessing laryngeal muscle tension
suggests that RFF correlates with severity of vocal symptoms in speakers with dyspho-
nia [9–11] and can distinguish speakers with and without voice disorders characterized
by excessive laryngeal muscle tension, including individuals with vocal hyperfunction
(VH) [9,12,13], Parkinson’s disease [14,15], and adductor-type laryngeal dystonia [11].
Specifically, those with voice disorders characterized by excessive laryngeal muscle tension
tend to exhibit lower average RFF values, perhaps due to increased baseline laryngeal
muscle tension that impedes their ability to leverage tension as a strategy for devoicing
(voicing offset) and reinitiating voicing (voicing onset). RFF also normalizes (increases)
in individuals with VH following voice therapy (i.e., a functional change; [9,16]), but not
in individuals with vocal nodules or polyps following therapy (i.e., structural interven-
tion; [16]). This suggests that RFF reflects functional voice changes rather than structural
voice changes. It has also been demonstrated that RFF captures within-speaker changes
in vocal effort [17], or the perceived exertion of a vocalist to a perceived communication
scenario (i.e., vocal demand; [18]), as well as indirect kinematic estimates of laryngeal ten-
sion [19]. Despite the promise of RFF as an acoustic estimate of laryngeal muscle tension,
this measure requires refinement before it will be appropriate for routine clinical use.
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RFF can currently be calculated in two ways: manually or semi-automatically. The
current gold-standard method of computing RFF is through manual estimation techniques
using Praat software [20]. Due to the time- and training-intensive procedures that are
necessary to reliably perform manual RFF estimation, a semi-automated RFF algorithm,
called the “aRFF” algorithm was developed [21,22]. Both manual and aRFF estimation
techniques use autocorrelation to estimate fo, which occurs by comparing a segment of
the voice signal with itself when offset by a certain period. Despite being a relatively
fast fo estimation method, autocorrelation assumes signal periodicity and fo stationarity,
requiring 2–3 complete pitch periods to examine the physiological fo ranges encountered
in speech [23]. These characteristics are not ideal for estimating fo during the voicing
offset and onset transitions examined in RFF, which specifically capture rapid changes in
fo. Indeed, Vojtech et al. [24] compared the effects of different fo estimation techniques on
resulting RFF estimates, determining that fo estimation via the Auditory-SWIPE′ algorithm
(an algorithm that estimates the fo of an input sound by first filtering the sound using
a auditory-processing front-end then comparing the spectrum of the filtered sound to
a sawtooth waveform) [25] led to smaller errors between manual and semi-automated
RFF estimates compared to autocorrelation. The results of this work led to a refined
version of the aRFF algorithm that employs Auditory-SWIPE′ for fo estimation, as well
as using the acoustic metric, pitch strength [26], to account for differences in voice sam-
ple characteristics (e.g., recording location, overall severity of dysphonia). Incorporat-
ing both Auditory-SWIPE′ and pitch strength-based sample categories, this algorithm is
called “aRFF-AP”.

In both manual and semi-automated RFF estimation methods, the most tedious
step of the RFF computational process is identifying the boundary between voiced and
unvoiced speech. As RFF depends on the termination and initiation of voicing within a
VCV production, these points in time must be identified from the acoustic signal prior to
collecting vocal cycles for RFF estimation. Manual RFF estimation relies on trial-and-error
techniques of trained technicians to locate this boundary (requiring 20–40 min of analysis
time per RFF estimate; [11]), whereas the semi-automated RFF algorithms (aRFF, aRFF-AP)
take advantage of a faster, more objective approach. Specifically, three acoustic features
(normalized peak-to-peak amplitude, number of zero crossings, and waveform shape
similarity) are examined in time to identify where a state transition in feature values occurs
to locate voiced/unvoiced boundary. The aRFF and aRFF-AP algorithms assume that each
acoustic feature will exhibit a substantial change in feature values over time and that this
change will occur at the boundary between voiced and unvoiced segments.

1.2. Voiced/Unvoiced Boundary Detection

The methodology used to identify the voiced/unvoiced boundary in semi-automated
RFF estimation requires further inquiry. First, it is unclear as to whether the three features
used in aRFF and aRFF-AP algorithms are the best choice of acoustic features to mark the
initiation and termination of vibration since voiced/unvoiced boundary detection accuracy
has not been formally assessed amongst the three features or compared to that of other
acoustic features (e.g., cepstral peak prominence). Second, there is uncertainty in how
the boundary identified using these acoustic features corresponds to the physiological
initiation or termination of vocal fold vibration. This is because both manual and semi-
automated RFF methods rely only on the acoustic signal, which only provides indirect
information about the vibration of the vocal folds and may be masked by supraglottic reso-
nances, coarticulation (e.g., due to concurrent aspiration and frication), and radiation [27].
Thus—in addition to a lack of fo stationarity during vocal fold offset and onset
transitions—signal masking adds to the complexity of identifying the initiation or ter-
mination of vocal fold vibration. The uncertainties in acoustic boundary cycle identification
warrant further investigation to (i) inform the implementation of acoustic features used
in the semi-automated RFF algorithm and (ii) validate manual RFF estimation as a gold-
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standard that accurately represents changes in instantaneous fo during voicing offsets
and onsets.

High-speed videoendoscopy (HSV) may be a useful technique to examine the rela-
tionship between the acoustic signal and vocal fold vibration. By sampling at frame rates
much greater than typical modal (i.e., the vocal register most typically used during conver-
sational speech) fo values, HSV can capture cycle-to-cycle changes in vocal fold vibratory
behavior during voicing offsets and onsets [28–30]. Indeed, prior work has employed HSV
to investigate voicing offsets and onsets relative to the acoustic signal: Patel et al. [31]
acquired simultaneous recordings via a microphone and rigid laryngoscope as vocally
healthy speakers repeated /hi hi hi/ at their typical pitch and loudness. The results of
this work indicated a tight coupling between the acoustic signal and the physiological
vibrations of the vocal folds; however, this relationship may not be generalizable to the
acoustic outputs typically examined with RFF. Transitioning between a vowel and the
voiceless glottal fricative, /h/, may require different mechanisms than when transitioning
between a vowel and a voiceless obstruent produced via oral constrictions (e.g., /f/, /s/,
/
∫

/, /p/, /t/, /k/). For instance, Löfqvist et al. [32] observed that glottal vibrations contin-
ued uninterruptedly through the /h/ during the production of /aha/ sequences by some
speakers; these vibrations were not present for voiceless consonant productions of /asa/
or /apa/. Such differences could ultimately affect the relationship between oscillatory
events obtained from the laryngoscopic images and from the acoustic signal. Additionally,
the participants in Patel et al. [31] were limited to adults with typical voices, whereas the
target population for employing RFF in clinical voice assessments includes speakers with
voice disorders characterized by excessive laryngeal muscle tension. As such, additional
investigations are needed to examine voicing offsets and onsets in the context of speakers
with and without voice disorders.

1.3. Current Investigation

To carry out the present investigation, speakers with typical voices and speakers
with voices characterized by excessive laryngeal muscle tension were enrolled across a
wide age range to investigate the relationship between acoustic features and vocal fold
vibratory characteristics during intervocalic voicing offset and onsets. Acoustic features
were identified that corresponded with the physiological initiation and/or termination
of vocal fold vibration. The aRFF-AP algorithm was then further refined by modifying
algorithmic parameters corresponding to the HSV-tuned acoustic feature set (“aRFF-APH”).
Voiced/unvoiced boundary detection accuracy was computed for each of the three RFF
methods (manual estimation, aRFF-AP, aRFF-APH) relative to the actual vocal fold vibra-
tory features identified via HSV. It was hypothesized that incorporating features related
to the onset and offset of vocal fold vibration would improve the accuracy of acoustic
voiced/unvoiced boundary detection (aRFF-APH) over methods that did not leverage
these tuned features (manual, aRFF-AP).

2. Materials and Methods
2.1. Participants

Sixty-nine individuals with typical voices (33 cisgender females, 36 cisgender males)
aged 18–91 years (M = 43.2 years, SD = 23.1 years) were enrolled in this study. All pro-
vided informed, written consent in compliance with the Boston University Institutional
Review Board. All were fluent in English and had no history of speech, language, hear-
ing, neurological, or voice problems. A certified, voice-specializing speech-language
pathologist screened all participants with typical voices for healthy vocal function via
auditory-perceptual assessment and flexible nasendoscopic laryngeal imaging.

Fifty-three individuals with voice disorders characterized by excessive laryngeal
tension (28 cisgender females, 1 transgender female, 23 cisgender males, 1 transgender
male; M = 49.5 years, SD = 18.4 years, range = 19–75 years) were enrolled in this study. All
provided informed, written consent in compliance with the Boston University Institutional
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Review Board. All were fluent in English and reported no history of hearing problems.
Participants within this group were either diagnosed with idiopathic Parkinson’s disease
(PD) by a neurologist or were diagnosed with a hyperfunctional voice disorder (HVD; e.g.,
muscle tension dysphonia) by a board-certified laryngologist. All individuals with PD were
recorded while on their typical carbidopa/levodopa medication schedule. Individuals
who used deep brain stimulation devices (N = 5) were requested to turn their device
off for the duration of the data collection. Of the 53 participants with voice disorders,
25 (6 cisgender females, 1 transgender female, 18 cisgender males) were diagnosed with PD.
The average time since diagnosis was 7 years (SD = 5.8 years, range = 0–24 years), and the
average severity of motor complications as assessed via the Movement Disorder Society-
sponsored revision of the Unified Parkinson’s Disease Rating Scale (Part III) were moderate
(M = 48.8, SD = 20.5, range = 13–91). The remaining 28 participants (22 cisgender females,
5 cisgender males, 1 transgender male) were diagnosed with HVDs, including muscle
tension dysphonia (20/28), vocal fold nodules (4/28), vocal fold polyp (2/28), vocal fold
scarring (1/28), and hyperdermal lesion with secondary supraglottic compression (1/28).

A speech-language pathologist specializing in voice disorders assessed the overall
severity of dysphonia (OS; 0–100) of each participant using the Consensus Auditory-
Perceptual Evaluation of Voice (CAPE-V). The average OS for participants with typical
voices was 8.3 (SD = 6.7, range = 0.6–34.2), and that of participants with either an HVD or
PD was 15.6 (SD = 12.4, range = 0.9–51.3). The speech-language pathologist rerated 15% of
participants in a separate sitting to ensure adequate intrarater reliability. Pearson’s product-
moment correlation coefficient was calculated on the ratings using the statistical package
R (Version 3.2.4), yielding an intrarater reliability of r = 0.96. The overall demographic
information for participants with typical voices (split into young adults <40 years of age
and older adults ≥40 years of age), participants with HVDs, and participants with PD are
included in Table 1.

Table 1. Overall demographic information for the 122 participants.

Cohort
Gender Age Overall Severity of Dysphonia

M F Mean SD Range Mean SD Range

Young adults with
typical voices 18 17 22.8 5.5 18–31 5.4 3.8 0.6–23.5

Older adults with
typical voices 18 16 65.6 10.8 41–91 11.4 7.7 1.7–34.2

Adults with HVD 1 6 22 37.5 16.1 19–70 12.3 10.7 0.9–38.5
Adults with PD 2 18 7 63.0 9.4 43–75 19.2 13.3 4.0–51.3

1 HVD = Hyperfunctional voice disorder; 2 PD = Parkinson’s disease.

2.2. Procedure

The current study comprised three main components: participant training, experimen-
tal setup, and data collection. In the training segment, each participant was instructed to
produce the speech tokens that would be simultaneously captured via microphone and
flexible nasendoscope during data collection. Following the training segment, participants
were instrumented with recording equipment. Data collection then commenced, during
which participants were cued to produce speech tokens during a nasendoscopic exam-
ination that totaled approximately 5–10 min. The overall experimental time (including
consent, training, setup, and recording) required approximately 1–2 h.

2.2.1. Participant Training

Participants were trained to produce eight iterations of the VCV utterance, /ifi/. This
token was selected since the phoneme /i/ provides an open pharynx to better view the
vocal folds under endoscopy [19], whereas the phoneme /f/ has been shown to minimize
within-speaker variations in RFF [33]. Each participant was instructed to produce four /ifi/
utterances, take a breath, and then produce the remaining four /ifi/ utterances.
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Participants were then trained to produce the eight /ifi/ utterances at different vocal
rates and levels of vocal effort. These modifications were chosen to alter the stiffness of the
laryngeal musculature [34] to, in turn, produce voice with varying degrees of laryngeal
muscle tension. These utterances were collected in an effort to expand the dataset used
to investigate the relationship between acoustic features and vocal fold vibratory charac-
teristics during intervocalic voicing transitions across the spectrum of laryngeal muscle
tension. Using methodology employed by McKenna et al. [19], a metronome was used to
train three vocal speeds: slow rate (50 beats per minute), regular rate (65 beats per minute),
and fast rate (80 beats per minute). Similarly, participants were cued using methodology
described by McKenna et al. [19] to produce voice with varying levels of vocal effort (mild
effort, moderate effort, maximum effort) while maintaining comfortable speaking rate and
volume. While instructing participants to “increase your effort during your speech as if
you are trying to push your air out,” mild effort was cued as “mildly more effort than your
regular speaking voice,” moderate effort as “more effort than mild,” and maximum effort
as “as much effort as you can while still having a voice.”

2.2.2. Experimental Setup

After the training segment, participants were seated in a sound-attenuated booth and
instrumented with a directional headset microphone (Shure SM35 XLR) placed 45◦ from the
midline and 7 cm from the lips. Microphone signals were pre-amplified (Xenyx Behringer
802 Preamplifier) and digitized at 30 kHz (National Instruments 6312 USB). A flexible
routine endoscope (Pentax, Model FNL-10RP3, 3.5-mm) was then passed transnasally
through the inferior nasal turbinate, superior to the soft palate, and into the hypopharynx
for laryngeal visualization. In cases in which participant nasal anatomy or reported
discomfort interfered with image acquisition using the routine endoscope, a flexible slim
endoscope (Pentax, Model FNL-7RP3, 2.4-mm) was used. A numbing agent was not
administered so as to not affect laryngeal function [35], but a nasal decongestant was
offered prior to insertion to minimize participant discomfort as the endoscope was passed
through the nasal cavity. To record images of the larynx, the endoscope was attached to
a camera (FASTCAM Mini AX100; Model 540K-C-16GB; 256 × 256 pixels) with a 40-mm
optical lens adapter. A steady xenon light was used for imaging (300 W KayPENTAX
Model 7162B).

2.2.3. Experimental Recording

During the endoscopy procedure, participants were instructed to produce the eight
ifi/ repetitions for each condition, which were cued in the following order: slow rate,
regular rate, fast rate, mild effort, moderate effort, and maximum effort. Participants
completed a minimum of two recordings per condition, and recordings were repeated
when the experimenter determined that the vocal folds were not adequately captured
(e.g., obstruction by the epiglottis). Video images were acquired at a frame rate of 1 kHz
using Photron Fastcam Viewer software (v.3.6.6) to track the fundamental frequency of
vibration of the vocal folds, which is estimated to be 85–255 Hz during modal phonation
in adults [36]. Recording was triggered by the camera software and a custom MATLAB
(version 9.3; The MathWorks, Natick, MA, USA) script that automatically time-aligned the
video images with the microphone signal. Due to the recording limitations of the high-
speed imaging system, the synchronized microphone and HSV recordings were restricted
in duration to 7.940 s when the 3.5-mm endoscope was used and 8.734 s when the 2.4-mm
endoscope was used.

2.3. Data Analysis
2.3.1. High-Speed Video Processing
Technician Training

A semi-automated algorithm was used to identify the physiological termination and
initiation of vocal fold vibration from each /ifi/ production. To carry out this processing, a
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series of technicians used the algorithm to compute the glottic angle waveform, from which
vocal fold abductory and adductory patterns were isolated. The training and experimental
data processing schemes used to extract vocal fold vibratory features are described in
detail below.

Prior to processing experimental data, nine technicians underwent a training scheme
described by McKenna et al. [37]. In brief, technicians were first trained to measure
glottic angles (extending from the anterior commissure along the medial vocal fold edge
to the vocal process) from images obtained during a flexible nasendoscopic procedure
using a halogen light source and acquired at a conventional framerate of 30 frames per
second. Technicians were required to meet two-way mixed-effects intraclass correlation
coefficients (ICC) for consistency of agreement ≥0.80 when compared to glottic angle
markings made previously by a gold-standard technician [38]. The average reliability for
the nine technicians was ICC(3,1) = 0.89 (SD = 0.01, range = 0.88–0.91).

The nine technicians then completed training to use a semi-automated glottic angle
tracking algorithm, as described in detail in Diaz-Cadiz et al. [38]. Using this algorithm,
the technicians were trained to use time-aligned microphone signal and video frames
captured during an /ifi/ utterance to semi-automatically estimate the glottic angle over
time. Within the glottic angle tracking training, technicians were required to meet agree-
ment standards of ICC(3,1) ≥ 0.80 compared to a gold-standard technician, described
in Diaz-Cadiz et al. [38]. The resulting average reliability of the nine technicians was
ICC(3,1) = 0.85 (SD = 0.04, range = 0.80–0.91).

Experimental Data Processing

To process experimental data, technicians first determined whether each /ifi/ pro-
duction was analyzable based on manual inspection of the laryngoscopic recordings. An
/ifi/ production was rejected from further analysis if the glottis was obstructed (e.g., by
the epiglottis), if video quality was too poor to resolve the glottis, or if an /ifi/ production
at the end of the recording was incompletely captured due to the pre-defined recording
length. Of the potential 9172 /ifi/ productions recorded, 12.8% were considered unusable
(1173 of 9172), leaving 7999 for further processing.

Technicians then used the semi-automated angle algorithm to calculate the glottic
angle waveform for the usable /ifi/ productions (N = 7999). Within this analysis, each
of the nine technicians was assigned to analyze a subset of the 122 speakers, wherein
the assigned technician processed all /ifi/ productions of each speaker within the subset.
Assigned technicians were blinded to the diagnosis of the speakers in their analysis set. For
each speaker, the assigned technician determined whether the /ifi/ production was usable
and, if so, obtained a quantitative estimate of the glottic angle for the production. During
this process, all /ifi/ productions assigned to a technician were visually inspected to ensure
that the anterior one-third of the vocal folds (anterior commissure) was visible for the semi-
automated algorithm to sufficiently track the vocal folds over time. Manual intervention
was implemented if algorithmic estimates of the glottic angle waveform was deemed
inappropriate by the technician; if errors persisted following manual intervention, the
technicians were instructed to mark the instance as unusable. The technicians accepted the
fully automated results in 75.0% of cases (6000 of 7999), whereas the technicians accepted
the automated results only after performing manual glottic angle intervention in 21.5%
of cases (1721 of 7999). The remaining 3.5% of cases were discarded due to producing
inappropriate glottic angle estimates even after manual-assisted angle estimation (278 of
7999). This analysis resulted in 7721 usable /ifi/ productions for further processing. This
initial data processing was then rechecked by a second technician.

A series of kinematic time points were then extracted from each usable /ifi/ produc-
tion to mark the physiological termination or initiation of vocal fold vibration. Technicians
were presented with a MATLAB GUI showing time-aligned high-speed video frames,
the microphone signal, the previously extracted glottic angle waveform, and a high-pass
filtered version of the quick vibratory profile (QVP; see Figure 2). The QVP was included
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here as an alternative to the glottic angle waveform due to its sensitivity to HSV imagery
and superior ability to track the vibrating glottis during the transition between voiced and
unvoiced segments [29]. The QVP was calculated by (i) centering the HSV frame over
the glottis using the semi-automated glottic angle extraction algorithm from Diaz-Cadiz
et al. [38], (ii) calculating vertical and horizontal profiles of the HSV frames using the
methodology from Ikuma et al. [29], and (iii) high-pass filtering the resulting QVP using a
7th order Butterworth filter to attenuate low frequency energy below a cut-off frequency
of 50 Hz.
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Filtered quick vibratory profile (QVP). The black dotted line in (b–d) indicates the current video frame shown in (a). The
time of voicing offset (orange solid line) and time of voicing onset (teal solid line) are indicated in (b–d).

With the MATLAB GUI, a total of three technicians used the time-aligned microphone
signal, glottic angle waveform, and QVP to identify the time of voicing offset (toff) and
the time of voicing onset (ton). For each participant, a single technician was assigned to
identify toff and ton for all utterances. In this analysis, toff was described as the termination
of the last vibratory cycle before the voiceless consonant, whereas ton was characterized
as the initiation of the first vibratory cycle after the voiceless consonant. In the event that
the vocal folds exhibited an abrupt closure at the start of voicing onset (i.e., prior to vocal
fold vibration), ton was extracted as the time point immediately before the point of abrupt
vocal fold closure. Technicians were instructed to use the glottic angle waveform and
QVP to identify these two time points, then corroborate the selected indices via manual
visualization of the raw HSV images. This process was carried out to minimize errors
that may occur if the glottic angle waveform failed to capture small glottal gaps during
vibratory cycle phases or if the QVP was confounded by lighting artifacts (e.g., intensity
saturation due to the epiglottis coming into view). The microphone signal was included
within the GUI to orient technicians in the event that the glottic angle waveform and QVP
both failed to properly track the vibrations of the vocal folds; in such cases, the technicians
were instructed to indicate that the production needed to be rejected or reprocessed.

The technicians each reanalyzed 10% of participants in a separate sitting to ensure
adequate intrarater reliability. The three technicians also analyzed the HSV images of
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the same participant to assess interrater reliability. Intrarater reliability was assessed
via two-way mixed-effects ICCs for absolute agreement, whereas interrater reliability
was computed using two-way mixed-effects ICCs for consistency of agreement (single
measures). Intrarater reliability ranged from 0.86 to 0.99, with an overall mean reliability of
0.96 (SD = 0.05). Average interrater reliability was ICC(3,1) = 0.91 (95% CI = 0.86–0.96) for
toff and ICC(3,1) = 0.97 (95% CI = 0.96–0.99) for ton.

2.3.2. Manual RFF Estimation

Five technicians were trained to manually estimate RFF using methodology described
in Vojtech and Heller Murray [39]. The dataset used to train individuals in manual RFF
estimation was a separate dataset from that described here and may be downloaded from
https://sites.bu.edu/stepplab/research/rff/ accessed on 21 April 2021. Technicians were
required to meet an interrater reliability criterion ≥0.93, as described in Vojtech et al. [24].
Table 2 shows the number of participants that each of the five technicians rated throughout
the course of data collection. Two trained technicians carried out manual RFF estimation
on each participant (7721 total /ifi/ productions). Mean RFF values were computed across
two technicians to use as the gold standard for RFF estimates.

Table 2. Number of participants for which each of five trained technicians manually computed
relative fundamental frequency 1.

Technician Total Ratings
Number of Participants in Common between Technicians

1 2 3 4 5

1 37
2 82 5
3 79 18 53
4 29 14 13 2
5 17 0 11 6 0

1 Total ratings sum to 244 as manual RFF estimation was performed twice for each participant (N = 122).

Intrarater reliability was assessed via Pearson’s correlation coefficients within each techni-
cian when instructed to reanalyze 20% of participants in a separate sitting, whereas interrater
reliability was computed via two-way mixed-effects ICCs for consistency of agreement. The
average intrarater reliability was calculated as r = 0.90 (SD = 0.05, range = 0.84–0.97), and the
average interrater reliability was computed as ICC(3,1) = 0.93 (SD = 0.04, range = 0.87–0.98).
Rater reliability was also examined by assessing the difference between selected boundary
cycles (i.e., voicing offset cycle 10, voicing onset cycle 1) of original and reanalyzed samples.
The mean intrarater error was 0.64 vocal cycles (SD = 0.44 cycles, range = 0–5 cycles), and
the mean interrater error was 0.71 vocal cycles (SD = 0.41 cycles, range = 0–6 cycles).

2.3.3. Semi-Automated RFF Estimation

Semi-automated RFF estimation was performed on all 7721 /ifi/ productions using
the MATLAB-based aRFF-AP algorithm, which is described in detail in Vojtech et al. [24].
The aRFF-AP algorithm estimates RFF using a 9-step process that includes: (1) identifying
the voiceless consonant and vowels in each production via high-to-low energy ratios of the
acoustic signal, (2) manually confirming and/or modifying the locations of the voiceless
consonant and vowels in the acoustic signal, (3) estimating the average fo and pitch strength
of the vowels via the Auditory-SWIPE′ algorithm [25], (4) categorizing the voice signal
based on average pitch strength, (5) identifying peaks and troughs of potential vocal cycles
pertaining to the vowel, (6) estimating a series of acoustic features during the transition
into or out of the voiceless consonant, (7) locating the boundary between each vowel and
the voiceless consonant by applying category-based thresholds to the acoustic feature
vectors, (8) rejecting instances that do not meet specified criteria (e.g., less than 10 onset or
offset cycles, glottalization, misarticulation, voicing during the voiceless consonant), and
(9) calculating RFF according to Equation (1).

https://sites.bu.edu/stepplab/research/rff/
https://sites.bu.edu/stepplab/research/rff/
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The relationship between acoustic and physiologic voicing transitions was assessed
by examining acoustic features relative to the termination (toff) or initiation (ton) of voicing.
This step is distinct from the development of the aRFF-AP algorithm, as Vojtech et al. [24]
examined acoustic features relative to the intervocalic voicing transitions indicated by
manual RFF estimation. To perform this analysis, a literature review was conducted to
select a set of acoustic features that showed promise in distinguishing voiced and unvoiced
segments, as is the goal of the acoustic features in the semi-automated RFF algorithm (i.e.,
step 7 of the aRFF-AP algorithm). The acoustic features that best corresponded with the
termination or initiation of voicing were then implemented in the aRFF-AP algorithm.

Acoustic Feature Selection

In the aRFF-AP algorithm, acoustic feature trends are examined to identify a state
transition in feature values that mark the boundary cycle, or the vocal cycle that distin-
guishes the vowel from the voiceless consonant. The boundary cycle is offset cycle 10 for
voicing offset and onset cycle 1 for voicing onset (see Figure 1). The aRFF-AP algorithm
uses three acoustic features to characterize the transition between voiced and unvoiced
segments: normalized peak-to-peak amplitude, number of zero crossings, and waveform
shape similarity.

In addition to the three features included within the aRFF-AP algorithm, a set of
15 new acoustic features were examined with respect to classifying voiced and unvoiced
speech segments: (1) autocorrelation, (2) mean cepstral peak prominence, (3) average
pitch strength, (4) average voice fo, (5) cross-correlation, (6) low-to-high ratio of spectral
energy, (7) median pitch strength, (8) median voice fo, (9) normalized cross-correlation,
(10) short-time energy, (11) short-time log energy, (12) short-time magnitude, (13) signal-
to-noise ratio, (14) standard deviation of cepstral peak prominence, and (15) standard
deviation of voice fo. Of the 18 total features (3 features currently in the aRFF and aRFF-AP
algorithms plus 15 new acoustic features), 13 features were calculated directly from the
microphone signal. This included autocorrelation, mean and standard deviation of cepstral
peak prominence, cross-correlation, low-to-high ratio of spectral energy, normalized cross-
correlation, normalized peak-to-peak amplitude, number of zero crossings, short-time
energy, short-time log energy, short-time magnitude, signal-to-noise ratio, and waveform
shape similarity. The remaining five features were calculated using a processed version of
the microphone signal. Specifically, the third step of the aRFF-AP algorithm leverages the
Auditory-SWIPE′ algorithm to calculate the fo contour and pitch strength contour of each
/ifi/ production. Three features were calculated from the fo contour (average, median, and
standard deviation of voice fo), and two features were computed using the pitch strength
contour (average and median pitch strength).

In addition to examining the 13 acoustic features extracted from the raw microphone
signal, filtered versions of these features were also considered. The aRFF and aRFF-AP
algorithms employ a version of the microphone signal when band-pass filtered ±3 ST
around the average fo of the speaker to identify peaks and troughs in signal amplitude. The
aRFF-AP algorithm also used this filtered version of the signal to compute normalized peak-
to-peak amplitude (whereas the number of zero crossings and waveform shape similarity
were calculated using the raw microphone signal). By including features computed from
the filtered microphone signal, the result of this literature review resulted in a total of
31 acoustic features for subsequent analysis. Table 3 provides an overview of the acoustic
features, including the signal used to calculate each and the proposed hypotheses in
acoustic feature values when used for voiced/unvoiced detection.
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Table 3. Acoustic measures for classifying voiced and unvoiced speech segments, with abbreviations (Abbr), the signal used
to calculate the feature, feature definition, and proposed hypotheses surrounding feature trends in voiced (V) vs. unvoiced
(UV) segments. Rows that are shaded orange indicate that the acoustic feature was included in aRFF-AP algorithm.

Feature Name Abbr. Signals Definition Hypothesized Trend

Autocorrelation ACO Raw and Filtered
Microphone

ACO is a comparison of a segment of a
voice signal to a delayed copy of itself as a

function of the delay [40–42].
V > UV

Mean Cepstral Peak
Prominence CPP Raw and Filtered

Microphone

CCP reflects the distribution of energy at
harmonically related frequencies [43] and is

calculated as the magnitude of the peak
with the highest amplitude in the cepstrum
(i.e., Fourier transform of power spectrum).

V > UV

Average Pitch
Strength APS Pitch Strength

Contour

Pitch strength is calculated using
Auditory-SWIPE′ [25] by correlating a voice

signal with a sawtooth waveform
constructed across a range of possible fo

values; the fo value that elicits the greatest
correlation is considered the fo of the signal,

and the degree of this correlation is the
pitch strength. APS is then calculated as the

average pitch strength of the window.

V > UV

Average Voice fo Afo fo Contour
Afo was calculated in the current study
using the Auditory-SWIPE′ algorithm

(described above in APS).
V > UV

Cross-Correlation XCO Raw and Filtered
Microphone

XCO is a comparison of a segment of a
voice signal with a different segment of the

signal [42,44,45].
V > UV

Low-to-High Ratio
of Spectral Energy LHR Raw and Filtered

Microphone

LHR is calculated by comparing spectral
energy above and below a specified

frequency. Using a cut-off frequency of
4 kHz [43,46], the LHR may distinguish

harmonic energy of the /i/ from
high-frequency aspiration and frication

noise (>2–3 kHz) of the /f/.

V > UV

Median Pitch
Strength MPS Pitch Strength

Contour MPS was included as an alternative to APS. V > UV

Median Voice fo Mfo fo Contour Mfo was included as an alternative to Afo. V > UV

Normalized
Cross-Correlation NXCO Raw and Filtered

Microphone

NXCO was included as an alternative to
XCO, in which the amplitude of the
compared windows is normalized to

remove differences in signal amplitude.

V > UV

Normalized
Peak-to-Peak
Amplitude

PTP Raw and Filtered
Microphone

PTP is the range of the amplitude of a
windowed voice signal. V > UV

Number of Zero
Crossings NZC Raw and Filtered

Microphone
NZC refers to the number of sign changes

of the windowed signal. V < UV

Short-Time Energy STE Raw and Filtered
Microphone

STE is the energy of a short voice segment
[41,47,48]. V > UV

Short-Time Log
Energy SLE Raw and Filtered

Microphone

SLE was included as an alternative to STE,
and is calculated as the logarithm of the

energy of a short voice segment.
V > UV

Short-Time
Magnitude STM Raw and Filtered

Microphone
STM is the magnitude of a short voice

segment [41,47,48]. V > UV

Signal-to-Noise
Ratio SNR Raw and Filtered

Microphone
SNR is an estimate of the power of a signal

compared to that of a segment of noise. V > UV
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Table 3. Cont.

Feature Name Abbr. Signals Definition Hypothesized Trend

Standard Deviation
of Cepstral Peak

Prominence
SD CPP Raw and Filtered

Microphone

SD CPP is the standard deviation of CPP
values within a window and may capture
variations in periodicity due to aspiration

and frication noise in the /f/

V < UV

Standard Deviation
of Voice fo

SD fo fo Contour

SD fo is the standard deviation of fo values
within a may be subject to fo estimation

errors during the /f/ (as unvoiced
segments would not have a valid fo value).

V < UV

Waveform Shape
Similarity WSS Raw and Filtered

Microphone

WSS is the normalized sum of square error
between the current and previous window

of time and is calculated relative to a
window of time in the /f/.

V < UV

Feature Set Reduction

The 31-feature set was first examined to remove features that did not sufficiently
capture the transition between voiced and unvoiced segments. The sliding window process
in step 6 of the aRFF-AP algorithm was simulated to estimate each feature over time,
ranging from the midpoint of the voiceless consonant and into the vowel. Acoustic feature
trends were then examined relative to HSV-derived voicing transitions as a function of the
number of pitch periods (“pitch period” refers to the duration of one glottal cycle and was
computed per /ifi/ production using the average fo determined using Auditory-SWIPE′)
away from the “true” boundary cycle; specifically, the true boundary cycle was set to
reference the time of voicing offset (toff) and the time of voicing onset (ton) to investigate the
relationship between these acoustic features and the physiologically derived termination
and initiation of vocal fold vibration, respectively. To comprehensively examine trends
in feature values, the acoustic features were analyzed as a function of ±10 pitch periods
from the true boundary cycle, resulting in 21 feature values (i.e., one feature value for
each pitch period) for each of the 31 acoustic features per /ifi/. The feature values were
then visually inspected to determine which acoustic features failed to exhibit a substantial
change in feature magnitude (empirically chosen at >0.25 normalized feature units) and/or
demonstrated a large standard deviation (empirically chosen at >2 standard deviations
from the mean) in feature magnitude during the transition between the voiceless consonant
and vowel; such features were removed from subsequent analysis.

The remaining acoustic features were then used as predictors in a stepwise binary
logistic regression to determine the probability of feature values corresponding to a
voiced (1) or unvoiced (0) segment. The 21 values per acoustic feature for each of the
7721 /ifi/ productions were continuous predictors. Feature values were assumed indepen-
dent in the regression model to identify which features were significantly related to voicing
status rather than to create a regression equation for predicting voicing status. Variable
significance was set to p < 0.05. Highly correlated features (variable inflation factor >10)
were removed from the model to reduce multicollinearity. Acoustic features that exhibited
significant predictive effects and were sufficiently independent were retained for further
algorithmic refinement.

Algorithmic Modifications

The acoustic features that exhibited significant predictive effects on voicing status
were introduced into the aRFF-AP algorithm to produce a more physiologically relevant
version of the RFF algorithms called “aRFF-APH” (aRFF-AP with HSV-derived acoustic
features). The pitch strength rejection criterion of the aRFF-AP algorithm—which removes
VCV productions with average pitch strength values below 0.05 from subsequent analysis
due to little-to-no presence of a pitch sensation—was retained in the current study to
streamline data processing. A sliding window based on the speaker’s estimated fo then
navigated from the voiceless consonant and into the vowel of interest. Within each window
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of time, the selected acoustic features from the current study were calculated rather than
those within the aRFF-AP algorithm (i.e., normalized peak-to-peak amplitude, number of
zero crossings, waveform shape similarity). Rule-based signal processing techniques were
then adapted from the aRFF [21,22] and aRFF-AP algorithms to identify the boundary cycle
separating voiced and unvoiced segments. To locate this cycle, the algorithm identified
a feature value that maximized the effect size between left and right components of each
acoustic feature vector; the cycle index that corresponded to this identified feature value
was selected as the boundary cycle candidate for that feature. From here, the median of
these candidates was then calculated as the final boundary cycle.

2.3.4. Performance of Manual and Semi-Automated RFF Estimation Methods

To examine the impact of introducing physiologically relevant acoustic features into
the semi-automated RFF algorithms, the ability of manual and algorithmic RFF estimation
methods to locate the true boundary cycle (derived via HSV; referenced to toff for voicing
offset and ton for voicing onset) was assessed. First, the 7721 /ifi/ productions from
122 participants were processed using the aRFF-AP and aRFF-APH algorithms as well as
manual estimation techniques. The accuracy of the three RFF estimation methods was then
quantified as the distance (in average pitch periods) between true and selected boundary
cycles for each voicing offset and onset instance of each /ifi/ production. The distance
between true and selected boundary cycles was compared across RFF estimation methods
to determine which method best corresponded with vocal fold vibratory characteristics
during intervocalic offsets and onsets.

2.4. Statistical Analysis

Chi-square tests were performed to determine whether there was a relationship
between RFF estimation method (manual, aRFF-AP, aRFF-APH) and boundary cycle
classification accuracy. Two chi-square tests were conducted: one for voicing offset and
one for voicing onset. In each analysis, a correctly classified boundary cycle referred to
an instance in which the distance between true and selected boundary cycles was zero
(whereas a misclassified boundary cycle corresponded to some non-zero distance between
true and selected boundary cycles). Significance was set a priori to p < 0.05. Cramer’s
V was used to assess effect sizes of significant associations. Resulting effect sizes were
interpreted using criteria from Cohen [49]. Post hoc chi-square tests of independence were
then performed for pairwise comparisons of the three RFF estimation methods using a
Bonferroni-adjusted p value of 0.017 (0.05/3 comparisons).

3. Results
3.1. Acoustic Feature Trend Analysis

Figure 3 shows the relationship between acoustic features and the true boundary
cycle (relative to toff) for 7721 voicing offset instances. Figure 4 shows this relationship
(relative to ton) for 7721 voicing onset instances. Manual inspection of these 31 features
resulted in the removal of the filtered number of zero crossings (NZC), raw and filtered
autocorrelation (ACO), filtered cepstral peak prominence (CPP), filtered low-to-high ratio
of spectral energy (LHR), raw and filtered standard deviation of cepstral peak prominence
(SD CPP), and standard deviation of voice fo (SD fo) due to a lack of discrimination between
voiced and unvoiced segments (indicated by the dashed lines in Figures 3 and 4). All
further analyses were completed using the remaining 23 features (indicated by the solid
lines in Figures 3 and 4).
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Figure 3. Normalized feature values calculated from the raw microphone signal or Auditory-SWIPE′ output (teal) with
respect to distance (pitch periods) from the true boundary cycle (thin black dotted line) for voicing offset. Normalized
feature values calculated from band-pass filtered microphone signal are overlaid in orange (when applicable). Top row:
normalized peak-to-peak amplitude (PTP), short-time magnitude (STM), short-time energy (STE), cross-correlation (XCO),
normalized cross-correlation (NXCO), autocorrelation (ACO). Middle row: mean and standard deviation of cepstral peak
prominence (CPP, SD CPP), signal-to-noise ratio (SNR), number of zero crossings (NZC), waveform shape similarity (WSS),
low-to-high ratio of spectral energy (LHR). Bottom row: log energy (LE), average and median pitch strength (APS, MPS),
average, median, and standard deviation of fo (Afo, Mfo, SD fo). Thick solid lines indicate mean values of features that were
retained after manual inspection. Thick orange and teal dashed lines indicate mean values of features that were removed
through manual inspection. Shaded regions indicate standard deviation.

3.2. Acoustic Feature Set Reduction

The results of the logistic regression (shown in Table 4) indicated that filtered wave-
form shape similarity, median of voice fo, cepstral peak prominence, number of zero
crossings, short-time energy, average pitch strength, normalized cross-correlation, and
cross-correlation were all significant predictors of voicing status for voicing offset (p < 0.05).
When using these eight features, the model for voicing offset accounted for 61.7% of the
variance in voicing status (adjusted R2 = 61.7%), with an area under the receiver operating
characteristic (ROC) curve of 0.96. Inspection of the coefficients indicated that the log
odds of voicing decreased per one-unit increase in short-time energy, normalized cross-
correlation, number of zero crossings, or filtered waveform shape similarity (i.e., negative
coefficient). On the other hand, the log odds of voicing increased per one-unit increase in
median of voice fo, cepstral peak prominence, average pitch strength, or cross-correlation
(i.e., positive coefficient).

For voicing onset, the stepwise binary logistic regression revealed that filtered wave-
form shape similarity, median of voice fo, cepstral peak prominence, number of zero
crossings, average pitch strength, signal-to-noise ratio, filtered short-time energy, and
filtered short-time log energy were all significant predictors of voicing status (p < 0.05;
see Table 4). The model for voicing onset accounted for 75.8% of the variance in voicing
status (adjusted R2 = 75.8%), with an area under the ROC curve of 0.98. The model for
voicing onset indicated that the log odds of voicing decreased per one-unit increase in
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number of zero crossings or filtered short-time energy. The log odds of voicing increased
per-unit increase in filtered waveform shape similarity, median of voice fo, cepstral peak
prominence, average pitch strength, signal-to-noise ratio, or filtered short-time log energy.
The resulting acoustic features were then incorporated into the aRFF-APH algorithms to
identify the boundary cycle of voicing.
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Figure 4. Normalized feature values calculated from the raw microphone signal or Auditory-SWIPE′ output (teal) with
respect to distance (pitch periods) from the true boundary cycle (thin black dotted line) for voicing onset. Normalized
feature values calculated from band-pass filtered microphone signal are overlaid in orange (when applicable). Top row:
normalized peak-to-peak amplitude (PTP), short-time magnitude (STM), short-time energy (STE), cross-correlation (XCO),
normalized cross-correlation (NXCO), autocorrelation (ACO). Middle row: mean and standard deviation of cepstral peak
prominence (CPP, SD CPP), signal-to-noise ratio (SNR), number of zero crossings (NZC), waveform shape similarity (WSS),
low-to-high ratio of spectral energy (LHR). Bottom row: log energy (LE), average and median pitch strength (APS, MPS),
average, median, and standard deviation of fo (Afo, Mfo, SD fo). Thick solid lines indicate mean values of features that were
retained after manual inspection. Thick orange and teal dashed lines indicate mean values of features that were removed
through manual inspection. Shaded regions indicate standard deviation.

3.3. Performance of Manual and Semi-Automated RFF Estimation Methods

The comparison of aRFF-APH, aRFF-AP, and manual RFF estimation techniques in
identifying the true boundary cycle is shown in Figure 5. Out of 7721 offset instances (see
Figure 5a), the aRFF-APH algorithms correctly identified the boundary cycle in 72.1% of
instances (N = 5565). The aRFF-AP algorithm correctly identified the boundary cycle in
65.0% of offset instances (N = 5021), followed by manual RFF estimation in which only
12.9% of offset boundary cycles (N = 994) were correctly identified. The proportion of
correct boundary cycle identifications by cohort is shown in Table 5. When using manual
RFF estimation, boundary cycles were correctly classified for participants with typical
voices less than a third of the time (14.7% for voicing offset, 30.4% for voicing onset). The
proportion of correctly identified boundary cycles decreased for the majority of individuals
with HVDs, including those with Parkinson’s disease (10.9% for voicing offset, 27.2% for
voicing onset) and muscle tension dysphonia (8.3% for voicing offset, 20.0% for voicing
onset). When using the aRFF-AP algorithm, offset boundary cycles were correctly classified
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for a larger percentage of typical voices (66.9%) than HVDs, including Parkinson’s disease
(58.9%) and muscle tension dysphonia (66.1%). Using the aRFF-APH algorithm did not
produce this trend, instead showing similar proportions between cohorts. Interestingly,
the proportion of correctly identified onset boundary cycles for participants with typical
voices relatively low for aRFF-AP (72.4%) and aRFF-APH algorithms (76.8%); this is in
contrast to, for instance, individuals with Parkinson’s disease (78.1% for aRFF-AP, 81.9%
for aRFF-APH) and muscle tension dysphonia (83.8% for aRFF-AP, 88.5% for aRFF-APH).
All offset and onset proportions were, however, greater across all cohorts when using the
aRFF-AP or aRFF-APH algorithms instead of manual estimation.

Table 4. Summary of significant variables in the stepwise binary logistic regression statistical model.

Model Acoustic Feature Coef SE Coef z p
95% Confidence Interval

VIF 1
Lower Bound Upper Bound

Voicing Offset

Constant 0.10 0.07 1.48 0.15 −0.03 0.24 —
Filtered Waveform Shape Similarity −1.52 0.05 −30.07 <0.001 −1.62 −1.42 1.30

Median of Voice f o 1.46 0.04 34.85 <0.001 1.37 1.54 1.21
Cepstral Peak Prominence 1.23 0.06 20.07 <0.001 1.11 1.35 1.27
Number of Zero Crossings −3.31 0.04 −78.69 <0.001 −3.39 −3.23 1.55

Short-Time Energy −5.72 0.15 −38.18 <0.001 −6.01 −5.42 9.03
Average Pitch Strength 9.24 0.12 78.52 <0.001 9.01 9.47 4.81

Normalized Cross-Correlation −0.84 0.05 −16.77 <0.001 −0.93 −0.74 1.53
Cross-Correlation 1.00 0.16 6.25 <0.001 0.69 1.31 7.74

Voicing Onset

Constant −2.18 0.10 −22.69 <0.001 −2.37 −2.00 —
Filtered Waveform Shape Similarity 1.40 0.08 18.34 <0.001 1.25 1.55 1.30

Median of Voice fo 2.21 0.06 40.31 <0.001 2.10 2.31 1.19
Cepstral Peak Prominence 1.05 0.08 12.53 <0.001 0.89 1.22 1.06
Number of Zero Crossings −2.62 0.06 −42.15 <0.001 −2.75 −2.50 1.66

Average Pitch Strength 8.94 0.15 59.45 <0.001 8.65 9.24 2.83
Signal-to-Noise Ratio 0.56 0.06 9.84 <0.001 0.45 0.68 2.44

Filtered Short-Time Energy −3.75 0.10 −37.51 <0.001 −3.95 −3.56 3.66
Filtered Short-Time Log Energy 3.11 0.07 44.81 <0.001 2.97 3.24 3.01

1 VIF = variable inflation factor.

Misclassifications occurred at the rate of 25.6% for aRFF-APH (N = 1978), 32.2% for
aRFF-AP (N = 2488), and 74.2% for manual RFF estimation (N = 5730). Nearly 13% of offset
instances (N = 997) were rejected during manual estimation, whereas under 3% of offset
instances were rejected by the aRFF-APH (N = 178) and aRFF-AP (N = 212) algorithms. For
the algorithmic methods, three offset instances were automatically rejected due to pitch
strength values < 0.05. The remainder of these rejections were due to errors in identifying
voiced cycles (N = 151 for aRFF-AP, N = 150 for aRFF-APH), or post-processing of resulting
RFF values (e.g., glottalization; N = 58 for aRFF-AP, N = 25 for aRFF-APH).

Out of 7721 onset instances (see Figure 5b), the aRFF-APH algorithm correctly identi-
fied the boundary cycle in 80.0% of instances (N = 6170). The aRFF-AP algorithm correctly
identified the boundary cycle in 77.2% of onset instances (N = 5833), followed by manual
estimation in which 28.0% of onset instances (N = 2158) resulted in correctly identified
boundary cycles. Misclassifications occurred at the rate of 4.0% for aRFF-APH (N = 310),
11.5% for aRFF-AP (N = 888), and 48.6% for manual RFF estimation (N = 3752). Almost a
quarter (N = 1811) of onset instances were rejected during manual analysis. The aRFF-AP
algorithm led to the least number of rejected onset instances (N = 1000; 13.0%), followed by
the aRFF-APH algorithm (N = 1241; 16.1%). A total of 216 onset instances were automati-
cally rejected by the aRFF-AP and aRFF-APH algorithms due to a pitch strength < 0.05; the
remainder of these rejections were due to errors in identifying voiced cycles (N = 567 for
aRFF-AP, N = 891 for aRFF-APH), or post-processing of resulting RFF values (N = 217 for
aRFF-AP, N = 134 for aRFF-APH).



Appl. Sci. 2021, 11, 3816 17 of 24

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 24 
 

Table 6. Chi-square (Χ2) tests of independence to examine RFF estimation method and accuracy of boundary cycle iden-
tification for voicing offset and onset. Cramer’s V effect sizes are interpreted using criteria from Cohen [49]. 

Model RFF Estimation Methods df N Χ2 p V 
Effect Size Inter-

pretation 

V
oi

ci
ng

 
O

ffs
et

 Manual vs. aRFF-AP vs. aRFF-APH 2 21793 5821.0 <0.001 0.52 Large 
Manual vs. aRFF-AP 1 14250 3928.0 <0.001 0.53 Large 

Manual vs. aRFF-APH 1 14268 4982.0 <0.001 0.59 Large 
aRFF-AP vs. aRFF-APH 1 15068 89.7 <0.001 0.08 Negligible 

V
oi

ci
ng

  
O

ns
et

 Manual vs. aRFF-AP vs. aRFF-APH 2 19112 6417.0 <0.001 0.58 Large 
Manual vs. aRFF-AP 1 12631 3420.0 <0.001 0.52 Large 

Manual vs. aRFF-APH 1 12391 4831.0 <0.001 0.62 Large 
aRFF-AP vs. aRFF-APH 1 13202 283.0 <0.001 0.15 Small 

 
Figure 5. Boundary cycle identification of each RFF estimation method (manual, aRFF-AP, aRFF-
APH). For (a) voicing offset and (b) voicing onset. Results for manual RFF estimation are shown in 
light orange, aRFF-AP in dark orange, and aRFF-APH in teal. 

4. Discussion 
The aim of the current study was to investigate the relationship between acoustic 

features and vocal fold vibratory characteristics during intervocalic voicing offsets and 

Figure 5. Boundary cycle identification of each RFF estimation method (manual, aRFF-AP, aRFF-
APH). For (a) voicing offset and (b) voicing onset. Results for manual RFF estimation are shown in
light orange, aRFF-AP in dark orange, and aRFF-APH in teal.

The results of the chi-square tests are shown in Table 6. Boundary cycle classification
accuracy was significantly different for RFF estimation method, producing large effect
sizes for both voicing offset (p < 0.001, V = 0.52) and onset (p < 0.001, V = 0.58). Boundary
cycle classification accuracy was significantly different between manual and aRFF-AP
methods. Post hoc analyses revealed a large effect for voicing offset (p < 0.001, V = 0.53)
and onset (p < 0.001, V = 0.52), wherein aRFF-AP was more likely to correctly identify the
boundary cycle than manual estimation. Boundary cycle classification accuracy was also
significantly different between manual and aRFF-APH methods. Post hoc analyses showed
a large effect for both voicing offset (p < 0.001, V = 0.59) and onset (p < 0.001, V = 0.62),
such that aRFF-AP was more likely to correctly identify the boundary cycle. Finally, the
boundary cycle classification accuracy was significantly different between semi-automated
RFF algorithms (aRFF-AP, aRFF-APH) for both voicing offset and onset (p < 0.001); yet, the
size of this effect was negligible for offset (V = 0.08) and small for onset (V = 0.15).
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Table 5. Proportion of correctly identified boundary cycles (%) by RFF estimation method and cohort.

Model Cohort N
Proportion of Correctly Identified Boundary Cycles (%)

by RFF Estimation Method

Manual aRFF-AP aRFF-APH

Voicing Offset

Typical voice 69 14.7 66.9 72.8
Parkinson’s disease 25 10.9 58.9 72.0

Muscle tension dysphonia 20 8.3 66.1 69.0
Nodules 4 7.4 66.3 69.8

Polyp 2 0.0 53.9 73.1
Scarring 1 20.8 58.3 87.5
Lesion 1 0.0 53.9 73.1

Voicing Onset

Typical voice 69 30.4 72.4 76.8
Parkinson’s disease 25 27.2 78.1 81.9

Muscle tension dysphonia 20 20.0 83.8 88.5
Nodules 4 15.4 93.6 98.0

Polyp 2 0.0 100.0 84.6
Scarring 1 33.3 62.5 83.3
Lesion 1 21.2 82.7 88.5

Table 6. Chi-square (X2) tests of independence to examine RFF estimation method and accuracy of boundary cycle
identification for voicing offset and onset. Cramer’s V effect sizes are interpreted using criteria from Cohen [49].

Model RFF Estimation Methods df N X2 p V Effect Size
Interpretation

Voicing
Offset

Manual vs. aRFF-AP vs. aRFF-APH 2 21793 5821.0 <0.001 0.52 Large
Manual vs. aRFF-AP 1 14250 3928.0 <0.001 0.53 Large

Manual vs. aRFF-APH 1 14268 4982.0 <0.001 0.59 Large
aRFF-AP vs. aRFF-APH 1 15068 89.7 <0.001 0.08 Negligible

Voicing
Onset

Manual vs. aRFF-AP vs. aRFF-APH 2 19112 6417.0 <0.001 0.58 Large
Manual vs. aRFF-AP 1 12631 3420.0 <0.001 0.52 Large

Manual vs. aRFF-APH 1 12391 4831.0 <0.001 0.62 Large
aRFF-AP vs. aRFF-APH 1 13202 283.0 <0.001 0.15 Small

4. Discussion

The aim of the current study was to investigate the relationship between acoustic
features and vocal fold vibratory characteristics during intervocalic voicing offsets and
onsets. A large set of speakers with typical voices and speakers with voices characterized
by excessive laryngeal muscle tension were instructed to produce the VCV utterance, /ifi/,
while altering vocal rate and vocal effort. Simultaneous recordings were acquired using
a microphone and flexible nasendoscope. The initiation (voicing onset) and termination
(voicing offset) of vocal fold vibration were identified via inspection of the laryngoscopic
images. A set of acoustic features were examined in reference to these time points, and a
stepwise binary logistic regression was performed to identify which features best coincided
with voicing offset and onset. The features that exhibited significant predictive effects were
then implemented into the semi-automated RFF algorithm (“aRFF-APH”). The accuracy of
the aRFF-APH algorithm in locating the transition between voiced and unvoiced segments
was then assessed against (1) the current version of the semi-automated RFF algorithm
(“aRFF-AP”), and (2) manual RFF estimation, the current gold-standard technique for
calculating RFF.

4.1. Performance of RFF Estimation Methods

The results of this investigation indicate that using the aRFF-APH algorithm led to
the greatest percentage of correctly identified boundary cycles (76.0%), followed by the
aRFF-AP algorithm (70.3%) then manual estimation (20.4%). This suggests that using
physiologically tuned acoustic features to identify the transition between voiced and
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unvoiced segments—even in the absence of methods to account for differences in voice
sample characteristics (i.e., as in the aRFF-AP algorithm)—improves the correspondence
between algorithmic and physiologic boundary cycles. These findings are in support of our
hypothesis that incorporating features related to the onset and offset of vocal fold vibration
improves the accuracy of acoustic voiced/unvoiced boundary detection.

When examining the proportion of correctly identified boundary cycles across cohort,
there were no obvious trends for either voicing offset or onset. Both aRFF-AP and aRFF-
APH algorithms demonstrate relatively similar performance across voice disorder cohorts,
with the exception of increased classification accuracy for individuals with nodules (N = 4)
and polyp (N = 2). However, it is difficult to draw conclusions from these results due to
the unbalanced nature of the dataset. For instance, the greatest proportion of correctly
classified offset and onset boundary cycles via manual RFF estimation was for participants
with scarring; however, there was only one participant with scarring included in the current
dataset, totaling only 24 VCV instances. Future work therefore should aim to validate the
aRFF algorithm (aRFF-AP, aRFF-APH) across a balanced set of HVD data.

Although the aRFF-APH algorithm demonstrated greater accuracy in detecting
voiced/unvoiced boundaries, the aRFF-AP algorithm remains the gold-standard method
for semi-automatically estimating RFF. This is because the aRFF-AP algorithm was de-
veloped and validated using independent training and test sets to improve the clinical
applicability of RFF. The aRFF-APH algorithm, on the other hand, was developed with the
goal of improving the acoustic voiced/unvoiced detection rather than clinical applicability
and was specifically tuned to the limited database examined here. As part of this investiga-
tion, all speakers were recorded in a sound-attenuated booth in the presence of constant
noise from the endoscopic light source. In addition to this single recording location, the
voice sample characteristics that were captured in the speaker dataset were more limited
that those used in the development of the aRFF-AP algorithm: Vojtech et al. [24] included
over 20 different primary voice complaints with an overall severity of dysphonia ranging
from 0 to 100, whereas the current study included a smaller range of diagnoses (57% typical,
16% MTD, 3% nodules, 2% polyp, 1% scarring, 1% lesion, 20% Parkinson’s disease) and
resulting dysphonia severity (0–51.3). Because of the limited spectrum of vocal function
captured here, pitch strength-tuned parameters and independent training/test sets were
not implemented in the development of the aRFF-APH algorithm in the current study.

4.2. Manual RFF Estimation as a Gold Standard

Despite the aforementioned differences between the aRFF-AP and aRFF-APH algo-
rithms, using either of these methods resulted in a greater boundary cycle identification
accuracy than when using manual estimation. These findings are unexpected since manual
estimation has long been considered the gold-standard RFF estimation method. Specifi-
cally, manual estimation has been long considered the benchmark for RFF since trained
technicians may exercise trial and error to identify the boundary cycle in difficult scenar-
ios (e.g., poor recording environment and/or equipment, severe dysphonia) when cycle
masking is present. Prior published work has not compared microphone-derived estimates
of RFF between manual and algorithmic estimation beyond that of Lien et al. [20] and
Vojtech et al. [24], which tuned the semi-automated RFF algorithm to manual estimates.
Moreover, prior work has not compared acoustically derived intervocalic voicing offsets of
RFF stimuli to those identified via high-speed videoendoscopy. These findings call into
question the utility of manual RFF estimation as a benchmark for accuracy comparisons.

It is possible that the characteristics of the speaker database confounded this outcome,
as noise from the endoscopic light source may have masked the voice signals and/or
speaker productions may have deviated from the norm due to the flexible nasendoscope.
Even though manual estimation makes use of trial and error to subjectively locate the
boundary cycle when masking is present, it is possible that manual estimation techniques
were not sensitive enough to isolate the physiological boundary cycle in these conditions.
On the other hand, the aRFF-AP algorithm was designed to account for such variations
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and the aRFF-APH algorithm was refined based on the physiologically determined vocal
fold characteristics. Both algorithms also identify potential vocal cycles using a filtered
version of the microphone signal that was designed to reduce the amplitude of vocal
tract resonances, coarticulation due to concurrent frication and aspiration, and radiation
of the lips. By only using the raw microphone signal to identify vocal cycles, the RFF
values resulting from manual estimation may not reflect the true offset or onset of voicing
as expected.

Although manual estimation resulted in the lowest boundary cycle identification
accuracy, it is important to note that most misclassifications occurred within two pitch
periods of the true boundary cycle for both voicing offset and onset (see Figure 5). These
findings are similar to those of Lien et al. [50], in which manual RFF estimation was
compared when performed on a microphone signal versus a neck-surface accelerometer
signal. Since a neck-surface accelerometer is able to capture the vibrations of the glottal
source in the absence of vocal cycle masking due to frication and aspiration (as may
occur during the production of an intervocalic fricative; [27]), the accelerometer signal
was considered to be a ground truth over the microphone signal. The authors observed
that misclassifications occurred closer to the vowel for both voicing offset and onset when
performing manual RFF estimation using a microphone signal rather than an accelerometer
signal. Whereas offset RFF values were extracted approximately two cycles closer to the
vowel when using a microphone signal, onset RFF values were computed less than one
cycle away from the voiceless consonant when using a microphone signal. The results of
the current study support these findings and, moreover, lend support to the supposition
that the aRFF-AP and aRFF-APH algorithms benefit from using a band-pass filtered version
of the microphone signal to identify potential vocal cycles.

As semi-automated RFF algorithm accuracy is typically quantified in reference to
manual RFF estimation (e.g., see [22,24]), it is important to consider that manual estimation
may not be a true gold-standard technique. Further investigation is necessary to examine
the hypothesis that differences in boundary cycle identification may be attributed to the
algorithms leveraging a band-pass filtered version of the microphone signal to reduce the
impacts of vocal tract resonances, coarticulation due to concurrent frication and aspiration,
and radiation of the lips. Such an investigation should include an analysis of both laryngeal
imaging and acoustics to comprehensively assess the relevance and validity of manual esti-
mation as the gold-standard technique for calculating RFF. Laryngeal imaging is a crucial
component for this investigation, as this modality can provide physiological confirmation
of vocal fold vibrations that are indirectly captured via RFF. In addition to comparing
manual and semi-automated boundary cycle selections, this investigation should aim to
compare the boundary cycles obtained via manual RFF estimation when using each version
of the acoustic signal (i.e., microphone, accelerometer). In the event that manual estimation
is no longer considered as gold-standard RFF method, efforts should be made to develop
new metrics of algorithmic performance to replace those that are calculated in reference to
RFF values obtained via manual estimation (e.g., root-mean-square error, mean bias error).

Even though manual RFF estimation demonstrated the lowest voiced/unvoiced
boundary detection accuracy, it should also be noted that this method is currently the
only means by which RFF can be calculated on running speech. Whereas manual RFF
technicians are trained to process both isolated VCV productions and VCV productions
extracted from running speech, the semi-automated RFF algorithm has been designed,
trained, and tested on isolated VCV productions since its origination (see [22]). Thus,
although aRFF-AP and aRFF-APH demonstrated greater accuracy in capturing the voicing
transitions necessary to compute RFF, both versions of the algorithm can only be used in
scenarios when the voice samples are compatible. It is therefore recommended that the
aRFF-AP algorithm—which was validated across a broad spectrum of vocal function and
recording locations [24]—be used in future investigations when compatible voice samples
(i.e., isolated VCV productions) are available. In scenarios that require RFF to be computed
from running speech, it is recommended that manual RFF estimation be used.
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4.3. Limitations and Future Directions

A limitation of the current study is that the semi-automated glottic angle extraction
algorithm used to identify glottic has only been used in previously published reports on
healthy participants [38]. The algorithm estimates the glottic angle in a given video frame
using the anterior one-third of the vocal folds (anterior commissure), which is largely
outside of the vicinity of phonotraumatic lesions and the effects of bowing due to vocal
fold atrophy. Regardless, visual inspection of each VCV production was carried out in this
work to verify accurate angle extraction in cases with and without abnormal anatomical
deviations (e.g., lesions, atrophy).

The results of the current study demonstrate the promise of using physiologically
relevant acoustic features to locate the boundary cycle between voiced and unvoiced speech
segments, specifically for estimates of RFF. However, additional steps must be undertaken
to improve the clinical applicability of the aRFF-APH algorithm. This should include the
use of independent training and test sets that span a broad range of vocal function. In doing
so, the aRFF-APH algorithm could be modified to include pitch strength-tuned algorithm
parameters to account for variations in voice sample characteristics. The aRFF-APH algo-
rithms should also be expanded to neck-surface accelerometer signals, as there has been a
growing interest in using the neck-surface vibrations generated during speech for ecological
momentary assessment and ambulatory voice monitoring (e.g., [27,51–60]). By capturing
daily vocal behavior through a neck-surface accelerometer, vocal behaviors associated with
excessive or imbalanced laryngeal muscle forces could be identified and monitored via
RFF. Although an accelerometer-based RFF algorithm has been developed [61] future work
should aim to improve this algorithm by identify physiologically tuned features that can
be used to identify the true termination and initiation of vocal fold vibration. Doing so
would further improve the clinical relevance of using RFF to assess and track laryngeal
muscle tension.

5. Conclusions

The current study examined the relationship between acoustic outputs from the
semi-automated RFF algorithm and physiological vocal fold vibratory characteristics dur-
ing intervocalic offsets and onsets. By incorporating features that reflected the onset
and offset of vocal fold vibration, algorithmic accuracy of voiced/unvoiced detection
increased. Voiced/unvoiced boundary detection accuracy when using the RFF algo-
rithm exceeded that of the gold-standard, manual method for calculating RFF. These
findings highlight the benefits of incorporating features related to vibratory offsets and
onsets for acoustic voiced/unvoiced boundary detection. It is recommended that the
recently validated version of the semi-automated algorithm be used to calculate RFF
when voice samples containing isolated vowel–voiceless consonant–vowel productions are
available, and manual RFF estimation in scenarios that require RFF to be computed from
running speech.
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