
This book is divided in three parts covering I) Chemistry, mode of action, toxicology, and general aspects on sterol biosynthesis inhibitors (SBI) (7 chapters) concerning piperazines, pyrimidines, pyrimidines, imidazoles, triazoles, morpholines, piperidines, and allylamines; II) the use of SBI in plant protection (6 chapters); and III) SBI compounds in human and animal mycoses (8 chapters) and aromatase inhibitors (1 chapter). Thirty-four authors contributed to this work.

In part I the chemistry of a large number of SBI compounds is reviewed, followed by an electron microscopic study, and a look at the mechanism of action of pyrimidines, pyrimidines, azoles, morpholines, and allylamines, as well as an approach for the development of new compounds and a review of toxicologic aspects of various compounds.

The mechanism of action of a large number of plant, human, and animal antifungals is described and discussed. In this respect the ergosterol biosynthesis or induced deficiency; the various aspects concerning sterols, cytochrome P-450, squalene epoxidase, fungistatic, fungicidal activity; the relation between the mechanism of action and the activity; and general aspects on toxicology, hormonal influences, and teratogenic implications are exposed.

Part II deals in detail with various aspects of plant protection SBI in general. The use of a large number of fungicides in cereals, stone fruit, grapes, and peanuts is discussed, and special attention is drawn to the combination of two or more antifungals. The rationale of this is to avoid emergence of resistant strains and to cover a broader