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Background: Keloids are thick fibrous scars that are refractory to treatment and
unique to humans. The lack of keloid animal models has hampered develop-
ment of effective therapies. The authors’ goal was to develop an animal model
of keloids using grafted engineered skin substitutes composed of keloid-derived
cells. To demonstrate the model’s utility, differences between deep and super-
ficial keloid fibroblasts were investigated.
Methods: Engineered skin substitutes were prepared using six combinations of cells:
1,normalkeratinocytesandnormal fibroblasts;2,normalkeratinocytesanddeepkeloid
fibroblasts; 3, normal keratinocytes and superficial keloid fibroblasts; 4, keloid keratin-
ocytes and normal fibroblasts; 5, keloid keratinocytes and deep keloid fibroblasts; and
6, keloid keratinocytes and superficial keloid fibroblasts. Engineered skin substitutes
stably grafted to athymic mice were evaluated for wound area, thickness, and gene
expression.
Results: Deep keloid fibroblasts displayed elevated expression of type 1 collagen alpha
1 (COL1A1), transforming growth factor �-1, periostin, plasminogen activator inhibitor
2, and inhibin beta A compared with superficial keloid fibroblasts and normal fibro-
blasts. After grafting, engineered skin substitutes in group 5 were significantly thicker
than controls and had increased COL1A1 expression. Engineered skin substitutes in
group 6 showed significantly increased area. Histologic analysis revealed abnormal
collagen organization in engineered skin substitutes containing deep keloid fibroblasts
or superficial keloid fibroblasts.
Conclusions: Aspects of the phenotypes of engineered skin substitutes prepared with
keloid cells are analogous to thickening and spreading of human keloid scars. There-
fore, use of keloid engineered skin substitutes is a valuable new tool for the study of
keloid scarring. (Plast. Reconstr. Surg. 129: 1259, 2012.)

Keloids are raised dermal scars that result from
an abnormal fibroproliferative response fol-
lowing skin injury. Keloid scars spread beyond

the original wound boundary and tend to be refrac-
tory to treatment.1 They are more common in darker
pigmented populations, including African Ameri-
cans, Asians, and Hispanics, and are believed to in-
volve a genetic component.1–5 Keloids share several
features with hypertrophic scars, including excessive

extracellular matrix deposition caused by unknown
mechanisms6; significant morbidity caused by itch-
ing, pain, and decreased range of motion7; pro-
foundly impacted psychosocial well-being; and im-
paired overall quality of life for affected patients.7–10

Importantly, there are no real cures for either type
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of scar, despite the availability of multiple treatment
options.11–13 The fact that there are no universally
accepted treatments for either keloids or hypertro-
phic scars underscores the heterogeneity of these
debilitating lesions and indicates that the key mech-
anisms involved in abnormal scarring remain to be
elucidated. Development of improved therapeutic
options could be facilitated by both an increased
understanding of the mechanisms of abnormal scar
development and the use of appropriate in vivo
models. However, the paucity of good animal mod-
els of abnormal scarring has significantly impeded
research efforts.14 Although there are a limited num-
ber of animal models that resemble some features
of hypertrophic scars,15–18 keloids are unique to
humans19 and there are currently no animal models
for keloid scarring. Rodent models have been de-
scribed that involve transplantation of human keloid
tissue into athymic rats or, more commonly, athymic
mice.20,21 However, these models are limited because
of the heterogeneous nature of the material trans-
planted, the limited time for which the transplants
remain viable, and the inability to assess prophylactic
therapies.19

In the absence of in vivo models, the role of
growth factors in keloid scar formation has been
studied in tissue culture models using cells derived
from keloids. For example, keloid-derived fibro-
blasts secrete increased levels of collagen and en-
zymes involved in extracellular matrix remodeling,
such as matrix metalloproteinases.22 Because kera-
tinocytes play an important role in paracrine regu-
lation of fibroblast function,23 their role in keloid
formation has also been investigated. Several reports
have described the influence of keloid-derived ker-
atinocytes on normal or keloid-derived fibroblasts in
culture.24–29 Those studies indicate that keloid fibro-
blasts and keratinocytes secrete paracrine signals,
distinct from signals in normal cells, to modulate
gene expression and activity. Although these studies
demonstrated the importance of keratinocytes in
regulating fibroblast function, cells grown in mono-
layer cannot reproduce the cell-cell and cell-matrix
interactions found in intact tissue. Recognizing the
importance of these interactions, an organotypic
method for studying keloid-derived fibroblasts was
previously described30 in which normal or keloid
fibroblasts were embedded in bovine collagen gels
overlaid with normal keratinocytes.30 In that model,
keloid fibroblasts caused increased gel contraction
compared with normal fibroblasts. Although this
model was more complex than previous two dimen-
sional co-culture models, it was limited to in vitro
analysis.

We hypothesized that engineered skin substi-
tutes prepared using keloid-derived fibroblasts
and keratinocytes grafted to mice could serve as an
in vivo model of human keloid scarring. Engineered
skin substitutes have been evaluated in clinical trials
as an adjunctive treatment to achieve wound closure
in burn patients with large wounds and limited do-
nor sites for autografting.31–34 For clinical applica-
tion to burn patients, cultured autologous der-
mal fibroblasts and epidermal keratinocytes are
combined with a collagen-based biopolymer
matrix.31,34–36 After 1 to 2 weeks of in vitro culture,
engineered skin substitutes demonstrate skin-like
tissue development, including differentiation of a
stratified epidermal layer with a cornified surface,
deposition of basement membrane, and remod-
eling of the dermal extracellular matrix by fibro-
blasts. Numerous preclinical studies have been
performed for analysis of engineered skin substi-
tutes using the athymic mouse model as a host,37–42

permitting essentially permanent engraftment be-
cause of the absence of T cells in this immunodefi-
cient mouse strain. The goal of the current study was
to investigate the use of engineered skin substitutes
as an in vivo model for the study of keloid-derived
cells. Other investigators have identified differ-
ences in gene expression when comparing deep
and superficial fibroblasts cultured from normal
skin43 or fibroblasts isolated from different regions
of keloid scars.44 We investigated transplantation
of engineered skin substitutes containing normal
and/or keloid cells for analysis of deep (reticular)
and superficial (papillary) fibroblasts, to assess the
validity of engineered skin substitutes as an orga-
notypic in vivo model of keloid scarring. When
combined in engineered skin substitutes and
transplanted to athymic mice, keloid keratinocytes
and deep keloid fibroblasts resulted in grafts that
were significantly thicker than controls. However,
if superficial fibroblasts were used, the trans-
planted grafts significantly increased in area but
not thickness. These results indicate differential
contributions of deep and superficial fibroblasts to
the phenotype of keloid scars, and suggest that ke-
loid engineered skin substitutes represent a valuable
in vivo model of keloid abnormality.

MATERIALS AND METHODS

Cell Culture and Engineered Skin Substitute
Preparation

Discarded human scar and skin samples were
obtained with University of Cincinnati Institu-
tional Review Board approval and in accordance
with the 1975 Declaration of Helsinki, as revised in
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1983. Primary cultures of fibroblasts and keratin-
ocytes were isolated from a thick keloid scar ex-
cised from the face of a 10-year-old male African
American burn survivor. The dermal component
of the keloid was dissected into “superficial” der-
mis, which was approximately 0.5 cm thick and
adjacent to the epidermis, and “deep” dermis, also
approximately 0.5 cm thick, before primary cul-
ture. Normal fibroblasts and keratinocytes were
isolated from full-thickness normal breast skin of
a 17-year-old African American female patient un-
dergoing elective breast reduction surgery; the
entire dermal layer was used for fibroblast culture
without subdivision. Fibroblasts and keratinocytes
were isolated and cultured separately in specific
growth medium as described in detail elsewhere.45

Briefly, tissue samples were cleansed using 5%
Dettol and then rinsed several times in 4-
(2-hydroxyethyl)-1-piperazineethanesulfonic acid–
buffered saline. Tissue was cut into 2- to 3-mm-wide
strips and incubated overnight at 4°C in 30 ml of
Dispase II [2.4 units/ml in 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid–buffered saline;
Roche Applied Science, Indianapolis, Ind.], fol-
lowed by manual separation of epidermis from der-
mis. Deep dermis tissue was processed immediately,
without Dispase II incubation, for fibroblast isola-
tion. Dermal strips were minced finely and incu-
bated at 37°C for 1 hour in 30 ml of collagenase (625
units/ml; Worthington Biochemical Corp., Lake-
wood, N.J.) with occasional mixing. Fibroblasts were
rinsed with culture medium46 and cells and tissue
pieces were pelleted and inoculated into flasks. To
isolate keratinocytes, epidermal strips were incu-
bated for 5 minutes at 37°C in 0.025% trypsin (In-
vitrogen, Carlsbad, Calif.) plus 0.01% ethylenedi-
aminetetraacetic acid (Invitrogen); the mixture was
neutralized with 10% fetal bovine serum (Invitro-
gen) and filtered through a BD-Falcon 70-�m cell
strainer (BD Biosciences, Bedford, Mass.). Keratin-
ocytes were pelleted by centrifugation and inocu-
lated into flasks. Culture media were refreshed every
48 hours, and cells were passaged before reaching
confluence. All cells were harvested for preparation
of engineered skin substitutes at passage 2.

For preparation of engineered skin substitutes,
fibroblasts were grown to near-confluence, harvested,
and inoculated onto rehydrated bovine collagen-gly-
cosaminoglycan polymer substrates (approximately
40 cm2 starting area) at a density of 5 � 105/cm2.45,47

Two days later, keratinocytes were harvested at sub-
confluent densities and inoculated onto the dermal
substrates at a density of 1 � 106/cm2. Engineered
skin substitutes were incubated at the air-liquid in-
terface for 14 days with daily medium changes.42 Six

groups of engineered skin substitutes were prepared
(n � 3 per group): group 1, normal keratinocytes
and normal fibroblasts; group 2, normal keratino-
cytes and deep keloid fibroblasts; group 3, normal
keratinocytes and superficial keloid fibroblasts;
group 4, keloid keratinocytes and normal fibro-
blasts; group 5, keloid keratinocytes and deep keloid
fibroblasts; and group 6, keloid keratinocytes and
superficial keloid fibroblasts.

Grafting to Mice
All animal studies were performed with Uni-

versity of Cincinnati Institutional Animal Care and
Use Committee approval and following U.S. Na-
tional Institutes of Health guidelines. Homozy-
gous nude athymic female mice, aged 6 to 8 weeks,
were obtained from Harlan Laboratories (India-
napolis, Ind.). Engineered skin substitutes were
cut to 2 � 2-cm squares and transplanted to full-
thickness excisional wounds cut on the right flank
of each mouse, to the depth of the panniculus
carnosus, as described in detail elsewhere (n � 8
per group).45,48 Grafts were sutured to the wounds
at the corners and sides and covered with multiple
layers of gauze coated with antimicrobial oint-
ment, and opposing sutures were tied over the
gauze to stent the wound and limit contraction for
2 weeks after surgery.45 The grafted areas were
covered with OpSite occlusive dressing (Smith &
Nephew, London, United Kingdom), and the mice
were wrapped using Coban bandages (3M Health
Care, St. Paul, Minn.) until the dressing materials
were removed at 2 weeks.

Mice were photographed every 2 weeks, and
beginning at week 4, grafted areas were traced
onto sterile frosted Mylar sheets for calculation of
wound areas using planimetry (ImageJ software;
National Institutes of Health, Bethesda, Md.;
http://rsbweb.nih.gov/i/). Mice were killed at 12
weeks after surgery and biopsy specimens of en-
gineered skin substitutes were collected for histo-
logic analyses, immunohistochemistry, and RNA
isolation.

Histologic Analysis and Immunohistochemistry
Biopsy specimens of engineered skin substi-

tutes for histology were processed and sectioned
by the Shriners Hospitals for Children–Cincinnati
Histology Core Facility. Samples for histologic
analysis were fixed in 10% buffered neutral for-
malin, embedded in paraffin, sectioned, and
stained using Gomori’s One Step Trichrome
Method for Connective Tissue (Light Green), ac-
cording to the manufacturer’s instructions (Poly
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Scientific R&D Corp., Bay Shore, N.Y.). Engraft-
ment of human cells was confirmed by immu-
nohistochemical localization of human leuko-
cyte antigen-ABC in frozen nonfixed engineered
skin substitute sections using a fluorescein-labeled
mouse monoclonal anti–human leukocyte anti-
gen class I antibody49 (Accurate Chemical & Sci-
entific Corp., Westbury, N.Y.). Only animals with
grafts that displayed positive human leukocyte an-
tigen-ABC immunostaining, indicating engraft-
ment of human cells in engineered skin substi-
tutes, were included for further analyses.

Image Analysis
Histologic sections were examined and photo-

graphed using a Nikon Eclipse 90i microscope
(Nikon Instruments, Inc., Melville, N.Y.). Thickness
of dermal and epidermal regions was quantified us-
ing image analysis (NIS-Elements AR3.1; Nikon). To
avoid biasing the thickness measurements because
of nonlinear dermal-epidermal junctions, quantifi-
cation was performed by separately calculating the
areas of the epidermis (beneath the stratum cor-
neum to the dermal-epidermal junction) and der-
mis (dermal-epidermal junction to the panniculus
carnosus) in microscopic fields photographed at 4�
magnification. Two to three low-power fields per
section were measured.

Expression Analyses
Fibroblasts were harvested and pelleted, and

cells were disrupted using Qiashredders (Qiagen,
Inc., Valencia, Calif.); engineered skin substitute
tissue biopsy specimens from mice were homog-
enized in lysis buffer using a rotor-stator homog-
enizer. RNA was isolated using RNeasy Mini Kits
(Qiagen). Quantitative real-time polymerase chain
reaction analysis was used for analyses of gene ex-
pression levels. cDNA was prepared using the Su-
perScript VILO cDNA synthesis kit (Invitrogen), and
amplification was performed using gene-specific
primers (RT2 qPCR Primer Assays; Qiagen), and the
iCycler iQ system (BioRad Inc., Hercules, Calif.).
The comparative ��Ct method was used to cal-
culate the fold differences between the house-
keeping gene glyceraldehyde 3-phosphate de-
hydrogenase (GAPDH) and the genes of interest.50

The following genes were selected for analysis be-
cause they were previously implicated in keloid scar-
ring: alpha 1 chain of type I collagen (COL1A1),
transforming growth factor beta-1 (TGF-�1), perios-
tin (POSTN), plasminogen activator inhibitor 2
(PAI2), inhibin beta A (INHBA), follistatin (FST),
and secreted frizzled-related protein 2 (SFRP2).44,46,51

All samples were analyzed in triplicate and the mean
expression levels, normalized to expression in nor-
mal fibroblasts or engineered skin substitutes con-
taining normal fibroblasts and keratinocytes, are
presented.

Statistical Analysis
Statistical analyses were performed to identify

any significant differences in COL1A1 expression,
grafted area, dermal thickness, or epidermal thick-
ness among groups. Gene expression data ob-
tained from normal, deep dermal, and superficial
dermal fibroblasts were not analyzed statistically
because technical triplicates, not biological repli-
cates, were examined. Statistical analyses were per-
formed using SigmaStat software version 3.1 (Sys-
tat Software Corp., Chicago, Ill.). For analysis of
COL1A1 expression in vitro and in vivo, and thick-
ness at week 12 after grafting, comparisons be-
tween groups were performed by one-way analysis
of variance, and subsequent pairwise comparisons
were performed using the Student-Newman-Keuls
method. For analysis of graft areas at sequential
times after grafting, two-way repeated measures
analysis of variance was used; variable factors
were time (weeks) and group. Subsequent pair-
wise comparisons were performed using the t test.
Differences were considered statistically signifi-
cant at values of p � 0.05.

RESULTS

Engineered Skin Substitutes Containing Normal
and Keloid-Derived Cells

To confirm regional differences between deep
keloid fibroblasts and superficial keloid fibroblasts,
expression levels of multiple genes previously im-
plicated in keloid scarring44,46,51 were analyzed
(Fig. 1). These included COL1A1, TGF-�1, POSTN,
PAI2, INHBA, FST, and SFRP2. As expected, all
were differentially expressed between normal and
keloid-derived fibroblasts. In addition, COL1A1,
TGFB1, POSTN, PAI2, and INHBA were expressed
at higher levels in deep keloid fibroblasts com-
pared with superficial keloid fibroblasts. FST and
SFRP2 were expressed at slightly higher levels in
superficial keloid fibroblasts compared with deep
keloid fibroblasts. The differential expression of
these genes suggested that there may be function-
ally relevant differences that could be evaluated
further in engineered skin substitutes grafted to
mice. Therefore, preparation of engineered skin
substitutes containing keloid-derived keratino-
cytes and either deep or superficial keloid fibro-
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blasts was performed to test the validity of using
the engineered skin model for investigation of
keloid-derived cells.

Engineered skin substitutes were prepared
using different combinations of normal or ke-
loid keratinocytes and fibroblasts: group 1, nor-
mal keratinocytes and normal fibroblasts; group 2,
normal keratinocytes and deep keloid fibroblasts;
group 3, normal keratinocytes and superficial keloid
fibroblasts; group 4, keloid keratinocytes and nor-
mal fibroblasts; group 5, keloid keratinocytes and
deep keloid fibroblasts; and group 6, keloid kera-
tinocytes and superficial keloid fibroblasts. Contrac-
tion of the collagen-based dermal substrate was ob-
served during in vitro culture, but there were no
differences in contraction among groups (data not
shown). Collagen expression was analyzed in engi-
neered skin substitutes at the end of the 2-week in
vitro incubation. COL1A1 expression was elevated in
engineered skin substitutes prepared with deep
keloid fibroblasts and either normal keratino-
cytes or keloid keratinocytes (Fig. 2); however,
the differences were not statistically significant,
probably because of a relatively high degree of
variability in each group.

Fig. 2. Expression of the gene encoding alpha chain of type 1
collagen (COL1A1) in engineered skin substitutes prepared with
normal and/or keloid derived cells. Relative expression levels
were determined using quantitative real-time polymerase chain
reaction and were normalized to the mean level for COL1A1 in
engineered skin substitutes prepared with all normal cells
(group 1). Technical triplicates were performed for each skin
substitute sample, and the means for engineered skin substi-
tutes in each group (n � 3 per group) are plotted � SEM.
Differences between groups were not statistically significant. NK,
normalkeratinocytes; NF,normal fibroblasts; DKF,deepkeloidfibro-
blasts; SKF, superficial keloid fibroblasts; KK, keloid keratinocytes.

Fig. 1. Expression of genes implicated in keloid scarring in fibroblasts
from normal skin, deep keloid dermis, and superficial keloid dermis.
Multiple genes previously shown to be differentially expressed be-
tween normal and keloid fibroblasts were examined by quantitative
real-time polymerase chain reaction in normal fibroblasts (black bars),
deep keloid fibroblasts (red bars), and superficial keloid fibroblasts
(blue bars). For most of these genes, differences in relative expression
were observed, not only between normal and keloid cells, but be-
tween deep keloid fibroblasts and superficial keloid fibroblasts. Plot-
ted are the means of technical triplicates � SEM, normalized to the
mean level for each gene in normal fibroblasts.
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Phenotypic Differences in Engineered Skin
Substitutes after Transplantation to Mice

Engineered skin substitutes were transplanted
to full-thickness excisional wounds in athymic
mice and evaluated up to 12 weeks after grafting
(Fig. 3). Differences in pigmentation were ob-
served between groups prepared with normal ker-
atinocytes or keloid keratinocytes, but these were
attributable to different amounts of melanocytes
contaminating the keratinocyte cultures used for
preparation of engineered skin substitutes. Mela-
nocytes have been observed to persist at variable
but low levels in the epidermal keratinocyte cul-
tures and remain as nonspecific “passengers” in
engineered skin substitutes.52 On healing, passen-
ger melanocytes can result in pigmented foci that
reach a finite size and persist long term, a phe-
nomenon observed in engineered skin substitutes
in both clinical and preclinical studies.48,52

Beginning at week 4, differences in wound
area were noted between groups, and wound area
measurements were therefore collected. During
the first 2 weeks after surgery, the wounds were
stented by dressing materials and thus differences
in wound contraction were not expected at early
time points. Historically, normal skin-derived en-
gineered skin substitutes grafted to mice contract
after dressing removal, stabilizing at 30 to 40 per-
cent of the original wound area by 6 to 8 weeks
after grafting.42,53 In contrast, engineered skin sub-
stitutes prepared with keloid keratinocytes and
superficial keloid fibroblasts (group 6) increased
in area, and by week 6 after grafting were signif-
icantly larger than engineered skin substitutes in
the other groups (Fig. 4).

At 12 weeks after surgery, mice were killed,
and immunohistochemistry with anti–human leu-
kocyte antigen-ABC antibody was used to quantify
engraftment (data not shown). Although the
number of engineered skin substitutes staining
positive for human leukocyte antigen-ABC varied
among groups (Table 1), the differences were not
statistically significant. Grafts that were negative
for human leukocyte antigen-ABC antigen stain-
ing were not included in the histologic, quantita-
tive, or gene expression analyses.

Histologic sections of engineered skin substi-
tutes from 12 weeks after transplantation showed
differences in collagen organization between engi-
neered skin substitutes prepared with normal kera-
tinocytes and normal fibroblasts compared with en-
gineered skin substitutes prepared using keloid cells
(Fig. 5). At this time point after grafting, the bovine

collagen from the biopolymer substrate used for in
vitro incubation has been replaced by newly synthe-
sized human collagen.54 In normal engineered skin
substitutes, collagen fibers were well organized and
were roughly parallel to the epidermis. In contrast,
thick, disorganized collagen bundles were observed
in engineered skin substitutes prepared with either
deep keloid fibroblasts or superficial keloid fibro-
blasts (Fig. 5). In addition, the dermal compart-
ments of engineered skin substitutes prepared with
keloid cells appeared thicker than normal engi-
neered skin substitutes.

Image analysis of histologic sections of en-
gineered skin substitutes was performed to
quantify epidermal and dermal thickness. No
differences in epidermal thickness were observed
among groups (Fig. 6). However, engineered skin
substitutes prepared with keloid keratinocytes and
deep keloid fibroblasts (group 5) had significantly
thicker dermal compartments compared with engi-
neered skin substitutes prepared with all normal
cells (group 1). Group 2 engineered skin substitutes,
prepared with normal keratinocytes and deep
keloid fibroblasts, also appeared thicker, but the dif-
ference was not statistically significant. Differences in
COL1A1 expression in vivo were observed among
groups, and the trends were similar to the differ-
ences in dermal thickness observed in vivo (Fig. 7).
COL1A1 expression was significantly higher in
groups 2 and 5, prepared using deep keloid fibro-
blasts, compared with controls, but was not in-
creased in grafts prepared using superficial keloid
fibroblasts.

DISCUSSION
The results presented here suggest that engi-

neered skin substitutes can serve as a model for
investigation of keloid scarring in vivo. After trans-
plantation to athymic mice, phenotypic differ-
ences were observed between engineered skin sub-
stitutes prepared using normal and keloid cells
and, in particular, between engineered skin sub-
stitutes prepared with deep or superficial keloid
fibroblasts. Engineered skin substitutes prepared
with keloid keratinocytes and deep keloid fibro-
blasts formed a thicker dermal layer in vivo com-
pared with controls, whereas engineered skin sub-
stitutes prepared with keloid keratinocytes and
superficial keloid fibroblasts increased in area
over time after grafting. These grafts initially con-
tracted after transplantation but by 4 weeks began
to increase in area and were significantly different
from normal engineered skin substitutes. The fact
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Fig. 3. Appearance of engineered skin substitutes containing normal and/or keloid-derived cells grafted to athymic mice. Shown
are representative mice photographed at 12 weeks after surgery. (Above, left) Group 1, engineered skin substitutes prepared with
normal keratinocytes and normal fibroblasts. (Above, center) Group 2, engineered skin substitutes prepared with normal keratino-
cytes and deep keloid fibroblasts. (Above, right) Group 3, engineered skin substitutes prepared with normal keratinocytes and
superficial keloid fibroblasts. (Below, left) Group 4, engineered skin substitutes prepared with keloid keratinocytes and normal fi-
broblasts. (Below, center) Group 5, engineered skin substitutes prepared with keloid keratinocytes and deep keloid fibroblasts. (Below,
right) Group 6, engineered skin substitutes prepared with keloid keratinocytes and superficial keloid fibroblasts. The corners of the
grafted areas are indicated by arrows.

Fig. 4. Area of engineered skin substitutes following transplantation to
athymic mice. Plotted are mean areas � SEM. All grafts were 4 cm2 at the
time of transplantation (week 0). Significant differences between group
6 and other groups are indicated. NK, normal keratinocytes; NF, normal
fibroblasts; DKF, deep keloid fibroblasts; SKF, superficial keloid fibro-
blasts; KK, keloid keratinocytes.
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that different phenotypes were observed when dif-
ferent keloid fibroblast populations were used for
preparation of engineered skin substitutes, and
that these phenotypes were significantly different
from controls, indicates that keloid engineered
skin substitutes grafted to athymic mice can serve
as a valuable in vivo model of keloid scarring. In
humans, keloid scars spread beyond the original
wound margin and often bulge out over adjacent
normal tissue. This bulging was not observed in
keloid engineered skin substitutes grafted to mice.

This may be attributable, in part, to the fact that
mouse skin is thinner and looser than human skin.
Rather than bulging over the top of adjacent
mouse skin, the grafted engineered skin substi-
tutes may displace the mouse skin as it increases in
area. It is possible that insufficient time was al-
lowed in this study for bulging scars to develop,
because keloids in humans can appear several
months after injury. In addition, wounding of the
healed engineered skin might be required to trig-
ger a wound healing response after establishment
of the keloid engineered tissue. Therefore, future
studies should include much later time points,
investigation of wounding in vivo, and analysis of
additional donor-derived cell strains, to fully eval-
uate these possibilities.

Alternatively, the different results observed in
engineered skin substitutes prepared with the two
distinct populations of fibroblasts may reflect dif-
ferent phenotypes of keloid scars that have been
described in human populations.5 In familial ke-
loids described in African tribes, two different in-
herited phenotypes of keloids have been ob-

Table 1. Engraftment of Engineered Skin Substitutes
Determined by HLA-ABC Immunohistochemistry

Group Cells HLA-Positive ESS

1 NK/NF 6/8
2 NK/DKF 5/8
3 NK/SKF 6/8
4 KK/NF 5/8
5 KK/DKF 6/8
6 KK/SKF 4/8
HLA, human leukocyte antigen; ESS, engineered skin substitutes; NK,
normal keratinocytes; NF, normal fibroblasts; DKF, deep keloid fibro-
blasts; SKF, superficial keloid fibroblasts; KK, keloid keratinocytes.

Fig. 5. Histologic sections of engineered skin substitutes in vivo. Shown are Masson trichrome–stained sections of engineered skin
substitutes from 12 weeks after transplantation. (Above, left) Group 1, engineered skin substitutes prepared with normal keratino-
cytes and normal fibroblasts. (Above, center) Group 2, engineered skin substitutes prepared with normal keratinocytes and deep
keloid fibroblasts. (Above, right) Group 3, engineered skin substitutes prepared with normal keratinocytes and superficial keloid
fibroblasts. (Below, left) Group 4, engineered skin substitutes prepared with keloid keratinocytes and normal fibroblasts. (Below,
center) Group 5, engineered skin substitutes prepared with keloid keratinocytes and deep keloid fibroblasts. (Below, right) Group 6,
engineered skin substitutes prepared with keloid keratinocytes and superficial keloid fibroblasts. Scale bar (above, left) � 0.2 mm and
is the same for all sections.
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served: one involving superficial spreading, and
one involving raised scars.5 The authors of that
study speculated that the heterogeneity ob-
served in phenotypes of keloids may be attrib-
utable to different causative genetic lesions.
Similarly, regional differences in gene expres-
sion may result in distinct phenotypes in engi-
neered skin substitutes prepared with keloid
cells, as described here.

Based on the phenotypes observed here, we
propose the following model. After wounding,
deep keloid fibroblasts cause thickening because
of overproduction of extracellular matrix compo-
nents or an imbalance between extracellular
matrix production and degradation. Spreading,
caused by superficial keloid fibroblasts, results in
an increase in surface area of the upper dermis
and overlying epidermis (Fig. 8). The result is a
bulging phenotype, which can vary from person to
person based on the relative contributions from
deep keloid fibroblasts and superficial keloid fi-
broblasts in the dermis. Further in vivo analyses of
keloid-derived cells from multiple different indi-
viduals in engineered skin substitutes, and com-
binations of deep and superficial fibroblasts, will
be pursued in future studies to validate this model.
Analysis of global gene expression patterns will be

Fig. 6. Increased dermal thickness in engineered skin substitutes
prepared with keloid keratinocytes and deep dermal keratino-
cytes. To calculate thickness while accounting for nonlinear der-
mal epidermal junctions, the areas of the epidermal (red bars) and
dermal (blue bars) components of a fixed field length were calcu-
lated. Statistical analyses showed that dermal components of en-
gineered skin substitutes in group 5 were significantly thicker than
grafts in group 1 (asterisk). NK, normal keratinocytes; NF, normal
fibroblasts; DKF, deep keloid fibroblasts; SKF, superficial keloid fi-
broblasts; KK, keloid keratinocytes.

Fig. 7. Expression of COL1A1 in engineered skin substitutes
prepared with normal and/or keloid-derived cells at 12 weeks
after transplantation to athymic mice. Shown are mean rela-
tive expression levels, normalized to the mean level for
COL1A1 in engineered skin substitutes prepared with all nor-
mal cells. Grafts that were negative for human leukocyte an-
tigen-ABC immunostaining were not included in the analysis.
NK, normal keratinocytes; NF, normal fibroblasts; DKF, deep
keloid fibroblasts; SKF, superficial keloid fibroblasts; KK, keloid
keratinocytes.
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required to begin to identify genetic pathways re-
sponsible for the observed phenotypes.

Fibroblast heterogeneity is well documented,
and differences in gene expression in different
regions of keloid scars have been described
previously.44 Similarly, differences in fibroblasts
cultured from papillary and reticular dermis
have been reported.55,56 Deep dermal fibroblasts
have been proposed to be critically important in
formation of hypertrophic scars because they
produce higher levels of collagen than superfi-
cial fibroblasts.57 The mechanisms that govern
fibroblast heterogeneity, and preserve it follow-
ing dissection and in vitro culture, remain
poorly understood. Inductive signals from epi-
dermal keratinocytes are involved in regulation of
fibroblast gene expression, and this may include
assignment of positional identity to dermal fibro-
blasts that varies based on distance from the epi-
dermis, resulting in stable differences in gene ex-
pression that are maintained following primary
culture.

In contrast to some previously described re-
ports of organotypic models containing deep or
superficial fibroblasts, or keloid versus normal
fibroblasts,30,43 significant differences in morphol-
ogy were not observed in engineered skin substi-
tutes in vitro. This may result from differences in
the methods used and timing of analysis. The
model described by Butler et al. required 28 days
of in vitro incubation for differences between
groups to become apparent.30 In our experiments,
engineered skin substitutes were maintained in
vitro for only 14 days, because this incubation has
been shown to yield optimal tissue development
following transplantation in vivo.34 Previous stud-
ies demonstrated that engineered skin substitutes

exhibit a hyperproliferative phenotype at day 14,
with fibroblasts actively remodeling the dermal
component.47,48 Thus, extension of the in vitro
incubation beyond 14 days may be required for
significant differences in matrix deposition and
contraction to be observed. Varkey et al. observed
differences in contraction between collagen-gly-
cosaminoglycan matrices inoculated with deep or
superficial fibroblasts, but these constructs were
smaller than those used in our study, did not con-
tain an epidermal keratinocyte layer, and were not
cultured in a lifted format.43 These factors likely
facilitated contraction of the matrix by fibroblasts.
In contrast, the organotypic model described here
consists of a relatively large substrate (approxi-
mately 40 cm2 starting area), with a surface layer
of keratinocytes; incubation at the air-liquid in-
terface is achieved by culturing the engineered
skin substitutes on a steel lifting platform covered
with a cotton wick to permit nutrient transfer to
cells within the engineered skin substitutes.45 This
format was developed in part to facilitate favorable
epidermal differentiation and barrier formation
for clinical application but may not be the best
approach for revealing differences in contraction
in vitro. However, this method can result in per-
manent engraftment following transplantation.

Differences in engraftment between groups
were not statistically significant and therefore are
not believed to result from the use of either deep
or superficial fibroblasts. Although athymic mice
are not expected to reject human cells, we have
previously observed a low, variable rate of graft
failure when engineered skin substitutes are ana-
lyzed several weeks to months after transplanta-
tion (data not shown). We attribute this to residual
T-cell immunity in nude mice, which has been

Fig. 8. Model for development of bulging keloid scars. (Left) Schematic diagram of cross-section of skin following a wound.
During wound healing, fibroblasts proliferate, migrate, and deposit extracellular matrix. Based on the observations from the
current study, fibroblasts in the deep dermis secrete extracellular matrix (ECM) and cause a thickening of the lower dermis, and
fibroblasts in the upper dermis spread, causing an increase in area (center). With increasing time after injury, the combination
of deep dermal thickening and superficial spreading results in a bulging phenotype (right).
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documented by others and also found to increase
as the mice age.58–60 For future applications of this
model, this minor limitation will necessitate the
use of additional mice to overcome reduced num-
bers because of failure to engraft in a small per-
centage of mice.

SUMMARY
We describe an organotypic model for the

study of keloid pathology in vivo. Although thick
bulging scars were not observed at 12 weeks, there
were significant differences between normal and
keloid grafts, thereby permitting the use of this
model for evaluation of therapeutic interventions
for reduction of fibrosis and normalization of the
keloid phenotype. This model contains both fi-
broblasts and keratinocytes in addition to biopo-
lymers; thus, it can be used to study both cell-cell
and cell-matrix interactions in a three dimen-
sional skin-like tissue. Because engineered skin
substitutes can be prepared using primary cells
from any patient, it can be customized for inves-
tigation of patient-specific factors. It is easily scal-
able, so that large numbers of mice can be grafted,
which represents a vast improvement over previ-
ous keloid rodent models that involved grafting of
human keloid tissue.21,61 Importantly, this model
of keloid scar can be used for evaluation of ther-
apeutic interventions, including novel treatments
and preventative strategies, and is therefore con-
sidered a valuable in vivo model for the study of
keloid scarring.
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