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a b s t r a c t

Spatial interaction models are frequently used to predict and explain interregional commodity flows.
Studies suggest that the effects of spatial structure significantly influence spatial interaction models,
often resulting in model misspecification. Competing destinations and intervening opportunities have
been used to mitigate this issue. Some recent studies also show that the effects of spatial structure can
be successfully modeled by incorporating network autocorrelation among flow data. The purpose of this
paper is to investigate the existence of network autocorrelation among commodity origin–destination
flow data and its effect on model estimation in spatial interaction models. This approach is demonstrated
using commodity origin–destination flow data for 111 regions of the United States from the 2002 Com-
modity Flow Survey. The results empirically show how network autocorrelation affects modeling inter-
regional flows and can be successfully captured in spatial autoregressive model specifications.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Interregional commodity flows play an essential role in main-
taining economic productivity and supporting regional economics.
They also have a considerable influence over national and regional
transportation systems, such as road management and traffic con-
gestion. In 2007, the total value of interregional commodity flows
was more than $11.6 trillion, and their total weight exceeded
12.5 billion tons (US Bureau of Transportation Statistics & CB.,
2007). The sheer size justifies the need to accurately estimate com-
modity flows in general; thus, understanding the determinants of
interregional commodity flows is a critical step in developing a
comprehensive model for them.

The purpose of this paper is to investigate the interregional
commodity flows in the US, considering autocorrelation structures
among the flows in the context of spatial interaction modeling. To
begin, studies show the usefulness of spatial interaction models for
modeling interregional commodity flows (Ashtakala & Murthy,
1988; Black, 1972; Chisholm & O’Sullivan, 1973). Spatial inter-
action models for interregional flows improve when the spatial
ll rights reserved.
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l. Modeling interregional comm
tate commodity flows. Compu
structure effect is taken into consideration (e.g., Brown & Ander-
son, 2002), which is commonly measured with an accessibility
variable (Kwan, 1998; Thill & Kim, 2005). In particular, Celik and
Guldmann (2007) demonstrate that incorporating competing
destination effects (Fotheringham, 1983) and intervening opportu-
nities (Stouffer, 1960) can further expand and improve the spatial
interaction model. These are called either network variables or
geographic separation variables. Roy and Thill (2004) provide an
extensive review of spatial interaction modeling methods and
approaches.

However, spatial interaction models often fail to explicitly
incorporate dependencies among flows, referred to as network
autocorrelation (Black, 1992). As discussed in the literature of spa-
tial autocorrelation (e.g., Anselin, 1988; Cliff & Ord, 1981), the pres-
ence of network autocorrelation violates the independence
assumption and may result in biased and inefficient parameter
estimates in spatial modeling. As a result, recent studies, including
Chun (2008), Fischer and Griffith (2008), Griffith (2009), and
LeSage and Pace (2008), discuss how to accommodate network
autocorrelation in spatial interaction models. They show that a
successfully specified model for network autocorrelation produces
unbiased parameter estimates and improves the model.

In this study, following Bröcker (1989), a spatial interaction
model is first specified and estimated in the context of a linear
regression of the 2002 Commodity Flow Survey (CFS) data (US
BTS & CB, 2007). An extended model with competing destination
odity flows with incorporating network autocorrelation in spatial interac-
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effects and intervening opportunities is also examined based on
Celik and Guldmann (2007). Next, a spatial regression approach
is employed to account for network autocorrelation in interre-
gional commodity flows and is critical for the following reasons.
First, it is anticipated that spatial regression that incorporates net-
work autocorrelation produces unbiased estimates. Second, spatial
regression is subsequently useful to examine statistically signifi-
cant interregional commodity flow determinants. Finally, a spatial
regression approach tends to produce a better model fit than a lin-
ear regression, thanks to the corrections provided by network
autocorrelation.

The remainder of this paper is organized as follows. Section 2
presents a relevant literature review. Section 3 then discusses the
analysis method and data. Next, Section 4 presents the results of
linear and spatial regression. Finally, Section 5 presents the conclu-
sions and discussion.
2. Literature review

Spatial interaction models are commonly used to model interre-
gional commodity flows. As discussed by Bröcker (1989), the inter-
regional flows of trade can be modeled with spatial interaction
models. In such models, the demand-and-supply side among areas
with several parameters constrains spatial equilibrium. Bröcker’s
work helps clarify how inconsistency forms between a spatial
trade theory and empirical analyses. Importantly, he shows that
the form of spatial interaction models effectively explains empiri-
cal flows, in terms of classical spatial equilibrium models (Enke,
1951; Samuelson, 1952). In terms of less-smaller geographic
scales, many efforts are made to estimate interregional flows in
various fields, such as commodities, telecommunications, and
migration, in a given set of spatial units using the framework of
spatial interaction model formulation (Black, 1972; Fotheringham
& O’Kelly, 1989; Guldmann, 1999). In the context of international
flows, Anderson and van Wincoop (2004) discuss that bilateral
trade resistance and all trading partners also influence spatial
interactions in trade flows among countries. This highlights the
importance of capturing price differentials, tariff structures, and
political barriers in modeling international flows.

From the geographic perspective, spatial structure effects (or
spatial configuration) among commodity regions have also been
specified, mainly as a form of competing destinations (CDs) and
intervening opportunities (IOs); these are expected to capture the
potential estimation misspecifications in interacting flows, which
enhance the model fitness to estimate interregional spatial interac-
tions. Specifically, the CD model is an approach that incorporates
spatial structure to correct under- or over-estimation which often
manifests in spatial interaction models (Fotheringham, 1983). In
general, an accessibility-type measurement among destinations is
entered in the model as a treatment. In contrast, the IO approach
aims to investigate a structural factor to reduce or increase the
interactions between origins and destinations (Stouffer, 1960). For
example, when large IOs are observed in regions between origin
and destination, the opportunities of inter-regions tend to partially
absorb interactions, and therefore become less than expected.
Hence, IOs can be interpreted as a measure of the spatial structure
among origins (Guldmann, 1999).

Recent work by Celik and Guldmann (2007) explained interre-
gional commodity flows in the US using spatial interaction models.
Their proposed spatial interaction model was specifically applied
to the 1993 US Commodity Flow Survey (CFS). By following
Bröcker’s framework, they captured the commodity flow
characteristics as a function of the variables origin, destination,
and distance. They then introduced three variables that can reflect
the effects of spatial structure: CD effects, IOs, and border effects.
Please cite this article in press as: Chun, Y., et al. Modeling interregional comm
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Additionally, they used an adjacency dummy variable in the model
to specify the border effect. This variable was also viewed as a
proxy of a spatial structure variable to capture a (highly antici-
pated) heavy interaction of commodity flows between regions that
share a common boundary. Their model showed these three vari-
ables (competing destination effects, intervening opportunities,
and border effects) to be statistically significant for describing
interregional commodity flows in the US. They concluded that
specifying spatial structure in the spatial interaction models im-
proves the models’ capability to explain interregional flows.

Furthermore, spatial autocorrelation is also used to capture the
effect of spatial structure in flows. Novak, Hodgdon, Guo, and
Aultman-Hall (2010) propose a freight generation model based
on a spatial regression model. Specifically, they suggest that
accounting for spatial autocorrelation in freight data improves a
linear regression model. However, as their analyses were con-
ducted on outbound flows from each origin without considering
destinations, their models did not form a spatial interaction model.
For example, distance-decay, which is an important element in
spatial interaction, was absent in their model.

In other recent research, the effectiveness of embedding net-
work autocorrelation in spatial interaction models has been shown
in flow data modeling (Chun 2008; Chun & Griffith 2011; Fischer &
Griffith 2008; LeSage & Pace 2008). Spatial dependency generally
occurs based on its geographic proximity. Likewise, it is expected
to be embedded in commodity flows, which are composed of
actual freight shipments in industries such as mining, manufactur-
ing, wholesale, and retail. This is due to commodity transactions
being highly dependent on the closeness of the spatial units,
specifically origins and destinations of the freight movements. This
spatial dependency issue in the spatial interaction model has been
identified since the 1970s (e.g., Curry, 1972; Griffith & Jones, 1980;
Sheppard, Griffith, & Curry, 1976). LeSage and Pace (2008) discuss
how to account for network autocorrelation in a spatial autoregres-
sive model. Fischer and Griffith (2008) also show that incorporat-
ing network autocorrelation, with an application of knowledge
transmission using patent citation data from the European Union,
improves spatial interaction models. Chun (2008) presents that
the network dependency structure can be specified based on
spatial choice behavior in the context of migration. Specifically,
he discusses how a network weight matrix is defined to reflect
competing destination effects and internal IOs. Further, Chun and
Griffith (2011) reveal that specifying network autocorrelation for
panel data, where multiple time spans are involved, is also effec-
tive treatment to improve the model fitting and provide better
parameter estimates.

Of critical concern in these efforts in the literature is capturing
spatial arrangement or dependency in commodity flow patterns.
These concerns have been reflected in the models using specific
treatments. Likewise, selecting appropriate variables is highlighted
to improve the model’s applicability in empirical analysis. Overall,
recent studies show that network autocorrelation has an influence
on spatial interaction models.

3. Analysis framework

3.1. Modeling interregional commodity flows

In this paper, gravity type spatial interaction models are used to
model interregional commodity flows in the United States. A sim-
ple gravity type spatial interaction model can be written as:

Fij ¼ k � PbO
i � P

bD
j � exp bdist � dij

� �
; i; j ¼ 1; . . . ;n ð1Þ

where Fij is a flow from origin i to destination j, Pi and Pj are
population at i and j, respectively, dij is the distance between i
odity flows with incorporating network autocorrelation in spatial interac-
ters, Environment and Urban Systems (2012), http://dx.doi.org/10.1016/
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and j, and (bO, bD, bdist, k) are parameters to be estimated. A linear-
ized gravity model is expressed by taking the natural logarithm
on the both sides of the equation with an error term, eij:

ln Fij
� �

¼ ln kð Þ þ bO � ln Pið Þ þ bD � ln Pj
� �
þ bdist � dij þ eij ð2Þ

The natural logarithm is generally used for a transformation of
the dependent variable. However, in this study, the Box–Cox trans-
formation is used to make the dependent variable at least close to a
normal distribution. The Box–Cox is conducted with the equation
below:

Fk
ij ¼

Fk
ij�1

k ; k–0
ln Fij
� �

k ¼ 0

(
ð3Þ

Hence, the natural logarithm is a special case of the Box–Cox
transformation when k = 0. The estimated k is 0.0296 for the US
interregional commodity flows. The independent variables are
used in natural logarithm form. Such a model has been frequently
estimated with linear regression, assuming the error term
independently and identically follows a normal distribution. This
gravity model can be further extended by introducing more inde-
pendent variables, the details of which are provided in the next
section.

The extended gravity type spatial interaction models are also
estimated within a spatial regression framework. This paper uses
spatial lag models. When unobserved latent variables such as
regional price information lead to spatial dependence, a spatially
lagged dependent variable can be used to account for the unob-
served variables. The matrix form below expresses a spatial lag
model specification to account for network autocorrelation:

ðI� qWÞY ¼ Xbþ e ð4aÞ

Y ¼ qWY þ Xbþ e ð4bÞ

where I is an identity matrix, Y is a dependent variable, X is a design
matrix for independent variables, b is a vector of parameters, W is a
network weight matrix, q is a parameter for network autocorrela-
tion, and e is a vector of errors. In conjunction with Eqs. (2) and
(3), Y is expressed as a vector of Fk

ij s with n2 � 1 dimension given
n regions. That is, Y ¼ ðFk

11Fk
12; � � � ; F

k
1n; F

k
21; F

k
22; � � � ; F

k
2n; � � � ; F

k
n1;

Fk
n2; � � � ; F

k
nn). Similarly, X has n2 � k dimension, where k is the

number of independent variables and e has n2 � 1 dimension. It is
assumed that e follows a normal distribution, N(0, r2I). The network
weight matrix, W, is correspondingly n2 � n2 dimensional. The
structure of a network weight matrix is discussed later in this
section.

Additionally, the model specification is further extended con-
sidering large internal flows within a region. In a flow dataset,
internal flows within a region generally dominate interregional
flows. That is, among n2 flows, n internal flows have much larger
values than interregional flows. While a dummy variable is often
used to mitigate this issue, LeSage and Fischer (2010) suggest a
procedure to modify independent variables by replacing values of
independent variables for internal flows with zero values. These
modified independent variables are denoted as Xinter. Then, the
model introduces additional independent variables containing
non-zero values for n internal flows from the original independent
variables and zero values for the other n2–n flows, which are de-
noted as Xintra. This modification is also similarly applied to inter-
cept. The spatial lag model with this modification becomes

Y ¼ qWY þ Xinterbinter þ Xintrabintra þ e ð5Þ

Here, the model anticipates that Xintra accounts for internal
flows and, hence, interregional flows are modeled avoiding the
impact of dominating internal flows.
Please cite this article in press as: Chun, Y., et al. Modeling interregional comm
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Accordingly, linear regression and spatial lag models estimate
US interregional freight flows, with and without consideration of
large internal flows. The linear regression is estimated with the
ordinary least square method, which is the same as maximum
likelihood estimation (MLE) in linear regression. The spatial lag
models are estimated with MLE, which is available in spdep
package in R (see Bivand, Pebesma, & Gómez-Rubio, 2008).

3.2. Network weight matrix specifications

A network weight matrix reflects a dependence structure
among flows. Chun (2008), Fischer and Griffith (2008), and LeSage
and Pace (2008) basically present four different specifications of
network dependence structure. The first specification is based on
the equation below:

bN
ij;kl ¼

1; if i ¼ k and bS
jl ¼ 1

0; otherwise

(
ð6Þ

where bN
ij;kl is an element of a binary type weight matrix, BN, with

n2 � n2 dimension and bS
jl is an element of spatial weight matrix,

BS, with n � n dimension. The non-zero value of bN
ij;kl indicates Fij

and Fkl are network neighbors in the specification. That is, flows that
have a same origin and spatially neighbored destinations are con-
sidered network neighbors. LeSage and Pace (2008) discuss this
specification to capture spatial autocorrelation among destinations.
Chun (2008) describes this specification to capture competing des-
tination effects.

The second specification is defined with same destination and
spatially neighbored origins. Each element of a network matrix
has an assigned value as below:

bN
ij;kl ¼

1; if j ¼ l and bS
ik ¼ 1

0; otherwise

(
ð7Þ

This can be interpreted as a network dependence structure to
reflect spatial autocorrelation among origins. Chun (2008) argues
that this dependence structure can be understood to capture inter-
vening opportunity effects. The third specification can be defined
as a combination of the first and second specifications. That is,
the addition of two network weight matrices based on Eqs. (6)
and (7) constructs another network weight matrix to reflect origin-
and destination-based autocorrelation structures together. This
can be expressed as

bN
ij;kl ¼

1; if i ¼ k and bS
jl ¼ 1; or if j ¼ l and bS

ik ¼ 1
0; otherwise

(
ð8Þ

Under the fourth specification, flows from spatially neighbored
origins to spatially neighbored destinations are considered as net-
work neighbors to each other. It can be expressed as

bN
ij;kl ¼

1; if bS
ik ¼ 1 and bS

jl ¼ 1
0; otherwise

(
ð9Þ

Using Kronecker product and Kronecker sum can easily create a
network weight matrix based on the above four specifications.
Chun and Griffith (2011) show that corresponding to the order of
the above four specifications, a binary type network matrix can
be defined as

BN ¼ BS � I ð10aÞ

BN ¼ I� BS ð10bÞ

BN ¼ BS � BS ¼ BS � Iþ I� BS ð10cÞ

BN ¼ BS � BS ð10dÞ
odity flows with incorporating network autocorrelation in spatial interac-
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where � and � denote Kronecker product and Kronecker sum
respectively, and I is an n � n identity matrix.

In this paper, network neighbors used for measurement are
defined with Eqs. (8), (10c). The network weight matrix, W in
Eqs. (4a) and (4b), is prepared through the row-standardization
of BN. Fischer and Griffith (2008) discuss the utility of this network
neighbor specification by showing the improvement of their spa-
tial interaction models for patent citation. Chun (2008) also shows
improvement of interstate migration models with this network
neighbor specification.

3.3. The effects of spatial structure in spatial interaction models

Different forms in spatial interaction modeling show the effects
of spatial structure. Conventionally, distance decay is used as a pri-
mary variable to reflect a geographical effect. This paper uses an
exponential type of distance decay (see Fotheringham and O’Kelly
(1989) for details). In addition to distance decay effect, the effects
of spatial structure have been introduced following two modeling
frameworks: competing destination and intervening opportunity.
Previous research (for example, Almeida & Goncalves, 2001; Celik
& Guldmann, 2007; Fik & Mulligan, 1990; Raphael, 1998; Roy,
1993) shows the improvement of spatial interaction models
incorporating CD and IO effects.

These two effects are commonly specified with accessibility
type variables. For example, Celik and Guldmann (2007) include
two variables in their spatial interaction models. First, a variable
to reflect CD effects is defined as

CDij ¼
X

k

TEk=dkj; k– i; jð Þ ð11Þ

where TEk is total employment at k and dkj is the distance between k
and j. Considering the spatial distribution of destinations, the CD
Fig. 1. 2002 CFS interregional flows with more th

Please cite this article in press as: Chun, Y., et al. Modeling interregional comm
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variable is calculated with other potential destinations among the
destination j. While a positive sign indicates an agglomeration
effect, a negative sign implies competition among destinations
(Fotheringham, 1983). Second, another variable is formulated to
capture IOs. As the IOs between an origin and a destination dyad
increase, flows between the pair decrease (Stouffer, 1960). Consid-
ering IOs on the path from an origin to a destination, the IO variable
is calculated with potential opportunities around the origin. The IO
variable is calculated as

IOij ¼
X

k

TEk=dik; k– i; jð Þ ð12Þ

Hence, this effect reflects spatial configuration around origins,
similar to destination cases (Guldmann, 1999). Celik and
Guldmann (2007) found that these two variables are highly signifi-
cant in their models.
4. An analysis of the US interstate commodity flows

4.1. Data

As mentioned in the previous section, a major concern in the
freight analysis is the construction of a set of variables that appro-
priately characterize origin, destination, and geographical separa-
tion among regions. In this paper, we used the 2002 Commodity
Flow Survey (CFS) data to construct interregional commodity flow
models. The Census Bureau and the Bureau of Transportation
Statistics of the United States determines and publishes this data,
and more importantly, the data include the Origin–Destination
(hereafter O–D) data of commodity flows in the United States in
terms of Freight Analysis Framework (FAF) zones. As illustrated
in Fig. 1, the FAF regions are basically delineated based on
an 5 billion dollars among 111 FAF regions.

odity flows with incorporating network autocorrelation in spatial interac-
ters, Environment and Urban Systems (2012), http://dx.doi.org/10.1016/
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Metropolitan Statistical Areas (MSAs), Consolidated Statistical
Areas (CSAs), or balances of States. Our models consider 111 FAF
regions which cover the contiguous United States. In other words,
our models do not involve other FAF regions outside of the inland
United States in the analysis because dependency among O–D
flows can be specified in the model when they are geographically
structured in a contiguous space and specified as a spatial weights
matrix to measure network autocorrelation. Note that we consid-
ered all types of commodity flows to construct the O–D flows
among FAF regions for a generalized model. Although it is difficult
to display the amount of interregional flows for 111 FAF regions,
Fig. 1 displays the dominant interregional flows with more than
5 billion dollars among the 111 FAF regions. For effective flow pat-
tern visualization, flows are treated as directional line symbols,
which connect the population weighted centroid of each region.

This paper specifies spatial interaction models to accommodate
underlying spatial structure effects as well as exogenous variables.
To do this, the explanatory variables of origin, destination, and geo-
graphical separation are prepared, along with the framework of
Bröcker (1989) and Celik and Guldmann (2007). First, the 2000
US Census provides the population size, whose county-level popu-
lation is aggregated according to the 111 FAF regions. Second, this
paper uses the 2002 Economic Census by US Census Bureau to
construct variables that reflect regional economic status, which
includes the number of employees, average production value, aver-
age plant size, and manufacturing. Third, the model includes family
income per capita to represent a proxy for purchase demand using
data from the 2002 Bureau of Economic Analysis (BEA), which is
used as a benchmark of each region’s economic status. Finally,
the model calculates a population weighted centroid of each region
to measure the geographic distances among the 111 regions. In
detail, the geographic distances are measured as the spherical dis-
tance between a dyad of population weighted centroids.

In modeling commodity flows among interregional regions
using spatial interaction models, it is primarily important to spec-
ify variables for the demand and supply sides. The origin variables
include income per capita (oinc), the number of employees (oemp),
Table 1
The results of linear regression models (OLS).

Base model

Unadjusted (LM-1u) Adjusted (LM-1a)

Coeff. Std. error Coeff. Std

intercept �29.0420 1.3825*** �29.8409 1.
intra_intercept – – 2.7627 12.
ln(oinc) 0.1067 0.1262 0.1524 0.
ln(oemp) 1.3430 0.0191*** 1.3551 0.
ln(oprod) 0.0899 0.0172*** 0.0682 0.
ln(oplant) �0.2963 0.0920** �0.1538 0.
ln(dpop) 0.3862 0.0325*** 0.3576 0.
ln(dinc) �0.0190 0.0810 �0.0220 0.
ln(dmanuf) 0.8971 0.0269*** 0.9313 0.
ln(intra_inc) – – �1.1514 1.
ln(intra_emp) – – 2.5197 1.
ln(intra_prod) – – 0.1057 0.
ln(intra_plant) – – �1.3185 0.
ln(intra_pop) – – �1.0506 1.
ln(intra_manuf) – – 0.2522 0.
dist �0.0015 0.0000*** �0.0014 0.
CD – – – –
IO – – – –

z-Score of Moran’s I
(p value)

97.36 (0.0000) 82.40 (0.0000)

AIC 43731.66 42180.73

Significance codes:
* 0.05.

** 0.01.
*** 0.001.
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average value of production (oprod), and average plant size
(oplant). Two variables among them, oemp and oprod, are employed
to represent production at the origin. While the income variable,
oinc, is considered a proxy for demand conditions at the origin,
the income level also reflects origin economic conditions. The aver-
age plant size, oplant, is expected to reflect the economy scale in
terms of production. The three destination variables, population
(dpop), income per capita (dinc), and manufacturing (dmanuf), rep-
resent demands at each destination. While dpop and dinc are con-
sidered final demand, dmanuf is a proxy for intermediate demand.

5. Results

Four different linear regression models are specified with the
adjustment of large intra flows and two of the above geographical
variables (i.e., CD and IO). The base linear regression model
(LM-1u) contains only origin and destination variables, as well as
a distance-decay effect variable. Adjusting large intra flows, as
specified in Eq. (5) (LM-1a), has further extended this model. Then,
the CD and IO variables, which Eqs. (11) and (12) prepare, are
introduced additionally for the base linear models, labeled as
LM-2u and LM-2a, respectively. These four models are estimated
in spatial lag model specifications, called similarly SLag-1u,
SLag-1a, SLag-2u, and SLag-2a.

Table 1 reports the results of the four linear regression models.
First, the inclusion of the two geographic variables CD and IO is
statistically significant. The estimates for these variables are signif-
icant at the 1% level in LM-2 models (their p-values <0.001). Adding
the two variables also improved the model fit. The AIC values of
LM-2 models decreased from those of LM-1 models, decreasing
from 43,731.66 to 43,159.61 for the model without the adjustment
of intra flows and 42,180.73–41,661.67 for the model with the
adjustment. Adding these variables also triggers the change of sta-
tistical significance for variables. While oinc and dinc variables are
not significant in LM-1 models, they are significant at the 1% level
in LM-2 models. In contrast, the oprod variable is significant in LM-
1 models at the 1% level but not in LM-2 models.
CD and IO model

Unadjusted (LM-2u) Adjusted (LM-2a)

. error Coeff. Std. error Coeff. Std. error

3076*** �22.3749 1.3823*** �23.8293 1.3104***

4002 – – 4.3228 12.1410***

1190 0.8024 0.1305*** 0.7784 0.1232***

0180*** 1.2961 0.0188*** 1.3126 0.0178***

0162*** 0.0009 0.0179 �0.0104 0.0170
0868 0.5534 0.1061*** 0.6015 0.1001***

0307*** 0.2523 0.0328*** 0.2404 0.0310***

0764 0.5265 0.0843*** 0.4663 0.0797***

0254*** 0.9827 0.0269*** 1.0054 0.0254***

4186 – – 0.3241 1.3904
4295 – – 2.1603 1.3997
1739 – – �0.0976 0.1705
9568 – – 0.4303 0.9398
1597 – – �0.8945 1.1354
3267 – – 0.3561 0.3199
0000*** �0.0017 0.0000*** �0.0016 0.0000***

�0.7134 0.0382*** �0.6374 0.0361***

�0.7575 0.0440*** �0.6850 0.0415***

92.25 (0.0000) 78.31 (0.0000)

43159.61 41661.67
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Table 2
The results of spatial lag models.

Base model CD and IO model

Unadjusted (SLag-1u) Adjusted (SLag-1a) Unadjusted (SLag-2u) Adjusted (SLag-2a)

Coeff. Std. error Coeff. Std. error Coeff. Std. error Coeff. Std. error

intercept �19.4079 1.0405*** �20.6682 2.6349*** �16.1960 1.1654*** �17.7440 1.0480***

intra_intercept – 3.7747 21.6137 – 4.5549 3.0949
ln(oinc) 0.1236 0.0734 0.1554 0.1328 0.4501 0.1082*** 0.4601 0.1008***

ln(oemp) 0.8302 0.0171*** 0.8721 0.0187*** 0.8233 0.0165*** 0.8683 0.0161***

ln(oprod) �0.0037 0.0075 �0.0124 0.0080 �0.0416 0.0160** �0.0468 0.0124***

ln(oplant) �0.1495 0.0576** �0.0546 0.1275 0.2404 0.0964* 0.3048 0.0752***

ln(dpop) 0.3833 0.0266*** 0.3624 0.0288*** 0.3094 0.0265*** 0.2957 0.0256***

ln(dinc) �0.1315 0.0802 �0.1206 0.1452 0.1682 0.0669** 0.1555 0.0671*

ln(dmanuf) 0.4188 0.0226*** 0.4750 0.0241*** 0.4815 0.0228*** 0.5343 0.0221***

ln(intra_inc) – – �0.9492 2.0246 – – �0.1838 0.2942
ln(intra_emp) – – 1.5934 1.0314 – – 1.4388 0.6422*

ln(intra_prod) – – 0.0062 0.1638 – – �0.0967 0.1000
ln(intra_plant) – – �1.5886 0.7193* – – �0.6630 0.6570
ln(intra_pop) – – �0.4310 1.1975 – – �0.3718 0.5630
ln(intra_manuf) – – �0.0345 0.2872 – – 0.0303 0.0670
dist �0.0004 0.0000*** �0.0004 0.0000*** �0.0006 0.0000*** �0.0006 0.0000***

CD – – – – �0.3877 0.0312*** �0.3559 0.0306***

IO – – – – �0.3593 0.0382*** �0.3366 0.0338***

rho (p value) 0.7206 (0.0000) 0.6726 (0.0000) 0.6983 (0.0000) 0.6482 (0.0000)
AIC 39200.2 38119.51 38976.44 37932.67

Significance codes:
* 0.05.

** 0.01.
*** 0.001.
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Second, adjusting large intra flows improved the model fit and
caused the change of statistical significance. The LM models with
the adjustment have smaller AIC values than their counterpart
models without the adjustment. This triggered the change of sta-
tistical significance of the oplant variable in LM-1 models. This
oplant variable is significant in LM-1u at the 1% level but becomes
insignificant in LM-1a. The estimates for the distance decay param-
eter find one significant change from this adjustment. Although
their estimates are not much different (i.e., from �0.0015 to
�0.0014 in LM-1 models and from �0.0017 to �0.0016 in LM-2
models), their 99% confidence intervals do not overlap with each
other; the 99% confidence intervals are (�0.00156, �0.00145) for
LM-1u, (�0.00142, �0.00132) for LM-1a, (�0.00178, �0.00166)
for LM-2u, and (�0.00163, �0.00152) for LM-2a. Although all of
the independent variables corresponding to only intra flows are
not statistically significant in both LM-1a and LM-2a models, it
may not be of primary interest, as LeSage and Fischer (2010) point
out.

Third, the linear regression models have significant positive
network autocorrelation. The z-scores of Moran’s I for LM-1u,
LM-1a, LM-2u, and LM-2a are very high: 97.36, 82.40, 92.25, and
78.31, respectively. These Moran’s I values were calculated consid-
ering the estimation effect by the independent variables. Their high
Table 3
Likelihood ratio test to SLag-2a model.

Log likelihood df LR stat p Value

LM-1u �21855.83 10 5818.993 0.0000
LM-1a �21073.37 3 4254.064 0.0000
LM-2u �21567.80 8 5242.939 0.0000
LM-2a �20811.83 1 3731.002 0.0000

SLag-1u �19589.10 9 1285.537 0.0000
SLag-1a �19041.75 2 190.840 0.0000
SLag-2u �19475.22 7 1057.774 0.0000
SLag-2a �18946.33 – – –

Please cite this article in press as: Chun, Y., et al. Modeling interregional comm
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z-scores indicate that the residuals have strong positive network
autocorrelation. The smaller Moran’s I values of LM-2u and LM-
2a, respectively, compared to those of LM-1u and LM-1a may imply
that CD and IO are able to capture a part of network autocorrela-
tion. Also, the adjustment of large intra flows noticeably reduced
the network autocorrelation level. LM-1a and LM-2a have smaller
z-scores for Moran’s I than LM-1u and LM-2u, respectively. Their
high z-scores of Moran’s I indicate that network autocorrelation
needs to be incorporated in their model specifications.

Table 2 reports the results of the spatial lag models to incorpo-
rate network autocorrelation. The spatial lag models are preferred
over the linear regression models with their smaller AIC values.
Incorporating network autocorrelation dramatically decreased
the AIC values from those of their counterpart linear regression
models. Among the four spatial lag models, SLag-2a has the best
model fit with the smallest AIC value, and SLag-1u has the largest
AIC values. Table 3 reports the results of the Likelihood ratio test
between each model and SLag-2a which has the smallest AIC value.
The results statistically confirm that SLag-2a has a better model fit
than the other seven models and, hence, is preferred among the
eight models.

The interpretation of the spatial lag models has been done with
estimated impacts rather than the estimated coefficients, as
suggested by LeSage and Pace (2009). Tables 4 and 5 report the
estimated direct, indirect, and total impacts for the spatial lag
models. Regarding the statistical significance, each variable has a
same statistical significance level for direct, indirect, and total
impacts. In the results of the SLag-1u model, while oemp, oplant,
dpop, dmanuf, and dist variables are significant at the 1% level for
all of direct, indirect, and total impacts, the other variables are
not significant for any of those impacts. This significance pattern
is consistent for the impact estimates of all of the spatial lag
models.

Compared with the results of the linear regression models, the
spatial lag models produce different statistical inferences for two
variables. While the oprod variable is statistically significant with
a positive sign at the 1% level in LM-1 models, its impact estimates
odity flows with incorporating network autocorrelation in spatial interac-
ters, Environment and Urban Systems (2012), http://dx.doi.org/10.1016/

http://dx.doi.org/10.1016/j.compenvurbsys.2012.04.002
http://dx.doi.org/10.1016/j.compenvurbsys.2012.04.002


Table 4
Impact estimates for the base models.

Unadjusted (SLag-1u) Adjusted (SLag-1a)

Direct effects Indirect effects Total effects Direct effects Indirect effects Total effects

Mean estimate z-Values Mean estimate z-Values Mean estimate z-Values Mean estimate z-Values Mean estimate z-Values Mean estimate z-Values

ln(oinc) 0.1347 1.7173 0.3076 1.7177 0.4422 1.7187 0.1668 1.1485 0.3078 1.1456 0.4746 1.1470
ln(oemp) 0.9039 51.1239*** 2.0668 24.9110*** 2.9708 33.4988*** 0.9365 44.8845*** 1.7275 24.8354*** 2.6640 33.8190***

ln(oprod) �0.0041 �0.5038 �0.0093 �0.5044 �0.0134 �0.5044 �0.0133 �1.5875 �0.0245 �1.5845 �0.0377 �1.5864
ln(oplant) �0.1624 �2.6104** �0.3722 �2.5865** �0.5350 �2.5972** �0.0586 �0.4521 �0.1081 �0.4535 �0.1666 �0.4531
ln(dpop) 0.4175 14.7073*** 0.9543 12.4100*** 1.3716 13.3909*** 0.3892 12.4121*** 0.7179 10.8181*** 1.1071 11.5710***

ln(dinc) �0.1417 �1.6112 �0.3275 �1.6051 �0.4707 �1.6080 �0.1295 �0.8358 �0.2388 �0.8338 �0.3683 �0.8347
ln(dmanuf) 0.4559 19.1743*** 1.0425 16.9099*** 1.4984 18.5221*** 0.5100 19.8294*** 0.9408 17.9562*** 1.4509 19.7827***

ln(intra_inc) – – – – – – �1.0193 �0.4124 �1.8802 �0.4086 �2.8995 �0.4100
ln(intra_emp) – – – – – – 1.7109 1.4881 3.1561 1.4904 4.8670 1.4905
ln(intra_prod) – – – – – – 0.0067 �0.0057 0.0123 �0.0089 0.0190 �0.0078
ln(intra_plant) – – – – – – �1.7058 �2.0978 �3.1467 �2.0901* �4.8525 �2.0948*

ln(intra_pop) – – – – – – �0.4628 �0.3100 �0.8537 �0.3060 �1.3166 �0.3074
ln(intra_manuf) – – – – – – �0.0371 �0.1530 �0.0683 �0.1556 �0.1054 �0.1547
dist �0.0005 �21.0581*** �0.0011 �24.2060*** �0.0015 �25.5781*** �0.0004 �19.2956*** �0.0008 �22.3332*** �0.0013 �22.9887***

Significance codes:
* 0.05.

** 0.01.
*** 0.001.

Table 5
Impact estimates for CD and IO models.

Unadjusted (SLag-2u) Adjusted (SLag-2a)

Direct effects Indirect effects Total effects Direct effects Indirect effects Total effects

Mean estimate z-Values Mean estimate z-Values Mean estimate z-Values Mean estimate z-Values Mean estimate z-Values Mean estimate z-Values

ln(oinc) 0.4867 4.3377*** 1.0050 4.2573*** 1.4917 4.2982*** 0.4910 4.6099*** 0.8168 4.5871*** 1.3078 4.6121***

ln(oemp) 0.8904 50.6209*** 1.8383 24.4513*** 2.7287 33.3816*** 0.9265 55.4143*** 1.5415 26.9588*** 2.4680 39.4768***

ln(oprod) �0.0450 �2.6555** �0.0930 �2.6190** �0.1380 �2.6345** �0.0499 �3.7226*** �0.0830 �3.6824*** �0.1330 �3.7066***

ln(oplant) 0.2599 2.6090** 0.5367 2.6119** 0.7966 2.6147** 0.3252 4.0523*** 0.5411 4.0424*** 0.8663 4.0581***

ln(dpop) 0.3346 11.8915*** 0.6909 10.4074*** 1.0255 11.0641*** 0.3155 11.5993*** 0.5249 10.4371*** 0.8404 11.0584***

ln(dinc) 0.1818 2.5700* 0.3755 2.5635* 0.5573 2.5690* 0.1659 2.3427* 0.2760 2.3424* 0.4418 2.3449*

ln(dmanuf) 0.5208 21.4590*** 1.0752 18.9041*** 1.5959 21.1405*** 0.5702 25.1489*** 0.9485 21.0200*** 1.5187 24.4741***

ln(intra_inc) – – – – – – �0.1962 �0.6152 �0.3263 �0.6143 �0.5225 �0.6148
ln(intra_emp) – – – – – – 1.5352 2.2502* 2.5541 2.2477* 4.0894 2.2509*

ln(intra_prod) – – – – – – �0.1032 �0.9443 �0.1716 �0.9410 �0.2748 �0.9425
ln(intra_plant) – – – – – – �0.7074 �1.0030 �1.1769 �0.9980 �1.8843 �1.0002
ln(intra_pop) – – – – – – �0.3968 �0.6532 �0.6601 �0.6540 �1.0568 �0.6538
ln(intra_manuf) – – – – – – 0.0324 0.4519 0.0538 0.4533 0.0862 0.4528
dist �0.0006 �25.5832*** �0.0013 �27.0043*** �0.0019 �30.6152*** �0.0006 �25.6742*** �0.0010 �27.7361*** �0.0016 �30.9336***

CD �0.4193 �12.5181*** �0.8657 �11.4292*** �1.2850 �12.0554*** �0.3798 �12.0263*** �0.6319 �11.2549*** �1.0117 �11.7923***

IO �0.3885 �9.5557*** �0.8022 �9.3906*** �1.1907 �9.6010*** �0.3592 �9.8447*** �0.5975 �9.5032*** �0.9567 �9.7825***

Significance codes:
* 0.05.

** 0.01.
*** 0.001.
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have a negative sign in SLag-2 models and are significant at the
same level. This oprod variable is not significant in LM-2 and
SLag-1 models. That is, considering both network autocorrelation
and the geographical variables CD and IO, the sign of its estimate
became the opposite. When only one of them is considered, its
estimate is not significant. However, the destination income vari-
able, dinc, has a different significance level. While, the coefficient
of dinc is significant at the 1% level in LM-1 models, its impact esti-
mates in SLag-2 models are not significant at the 1% level. Never-
theless, these impact estimates are still significant at the 5% level
with a same positive sign. Although the variables correspond only
to intra flows and are not a primary interest, intra_plant and in-
tra_emp variables are significant at the 5% level in SLag-1a and
SLag-2a models, respectively.

The influence of CD and IO variables can also be observed from
the impact estimates of the spatial lag models, as with the results
of the linear regression models. Significantly, the addition of CD
and IO variables increases the magnitude of the distance-decay
effect toward to the negative direction. While the total impact
estimates for the distance-decay are �0.0015 and �0.0013 in
SLag-1 models, the total impacts estimates in SLag-2 models are
�0.0019 and �0.0016. The magnitude increase is statistically
significant with their 99% confidence intervals not overlapping with
each other: their 99% confidence intervals are (�0.00169,
�0.00138) for SLag-1u, (�0.00140, �0.00112) for SLag-1a,
(�0.00207, �0.00175) for SLag-2u, and (�0.00171, �0.00145) for
SLag-2a. It is worth noting that these total impact estimates for
the spatial lag models’ distance-decay are not significantly different
from the coefficients of their corresponding variables in the linear
regression models’ results. For the CD variable, the 99% confidence
intervals are (�0.8118,�0.6150) for LM-2u, (�0.7302,�0.5445) for
LM-2a, (�1.5610,�1.0091) for SLag-2u, and (�1.2320,�0.7913) for
SLag-2a. For the IO variable, the 99% confidence intervals are
(�0.8709, �0.6440) for LM-2u, (�0.7918, �0.5781) for LM-2a,
(�1.5106, �0.8708) for SLag-2u, and (�1.2088, �0.7046) for
SLag-2a.

Based on SLag-2a with the best model fit, the independent
variables at origins and destinations are significant at the 1% level,
except the dinc variable, which is significant at the 5% level. Only
oprod has a negative relationship to interregional flows among
the origin variables. Three destination variables also show a posi-
tive relationship. It appears that we have observed the distance de-
cay effect. With negative signs for CD and IO, competing effects
among destinations appear, and IOs negatively impact interre-
gional flows. The independent variables also have significant indi-
rect (or neighborhood) impacts on the interregional commodity
flows. Hence, the interregional flows can be described as follows:
(1) the distance-decay is significantly negative, meaning that the
shorter the distance, the more the commodity flows; (2) competi-
tive effects are present among destinations and origins; (3) the
oinc, oemp, and oplant variables, which can represent the economic
size at origins, are positive and significant. However, the negative
sign of oprod may need further investigation; finally, (4) the three
variables representing demands at destinations are significant with
a positive sign.

The results have concerning implications in commodity flow
analysis, the structure of commodity. The model can incorporate
the structure of commodity flow patterns. Structural characteristic
reflects the tendency for sets of origins, destinations, or dyads to
have either similar or different commodity movement characteris-
tics. Moreover, this spatial structure reveals significant interstate
or regional connections. Although this approach is applied to com-
modity flows, it can also be applied to passenger flows. In addition,
the proposed model suggests that the model’s results can be used
to diagnose commodity volume flows over individual routes to
identify outliers.
Please cite this article in press as: Chun, Y., et al. Modeling interregional comm
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The existence of network autocorrelation on interstate flows
shows that an origin–destination cost for each pair of places is geo-
graphically dependent. The results also imply that network auto-
correlation affects the specification and solutions of spatial
interaction models with flow dependent costs. One weakness of
the spatial interaction model is that routes (costs) for each pair
of places are not necessarily the same throughout the network.
This implies that forecasting spatial interactions is less reliable
when interdependence among network segments exists. Results
support that segment-specific considerations are important in
interregional commodity flow models.

Although different model specification results also support that
models estimated by different approaches are not necessarily due
to any fundamental difference in principle, several variables (origin
employees, destination population and manufacturing, distance,
competing effects and intervening opportunities) powerfully
explain variations in interregional commodity flows. First, as the
number of employees at the origin increases, the interregional
commodity outflows from these nodes also increase. Second, as
population and the number of manufacturing at the destination
increases, the interregional commodity inflows to these nodes also
increase. Third, distance working as it relates to transportation
costs is a deterrent to interregional commodity trade. Last, compet-
ing destination effects and intervening opportunities play impor-
tant roles in interregional commodity flows. Specifically, as other
destinations are geographically clustered to a specific destination,
the commodity flows to destinations decrease. Similarly, destina-
tion nodes clustered around the origin serve as alternative destina-
tions. These results from interregional commodity flow are
consistent with findings of other spatial interaction applications,
and thus imply that the ability to obtain better origin and destina-
tion information about supplies and demands are important
factors in explaining the interstate commodity flows.
6. Summary and conclusions

This paper analyzed interregional commodity flows with spatial
interaction models, using the 2002 CFS commodity flows among
111 regions in the contiguous United States. In spatial interaction
models, an exponential type of distance decay was configured, as
were origin and destination variables. In addition, two geographi-
cal variables were considered in order to reflect the effect of spatial
structure: competing destination (CD) effects and intervening
opportunities (IOs). These spatial interaction models were esti-
mated in linear regression and spatial lag model specifications to
incorporate network autocorrelation.

The Moran’s I tests for the residuals of the linear regression
models report that the network autocorrelation in the linear
regression models is highly significant. Thus, the estimates of the
linear regression may be statistically biased. The estimates for
the network autocorrelation parameter, q, in the spatial lag models
have high magnitudes (q P 0.6482). The magnitudes of q parame-
ter estimates reflect the level of network autocorrelation in the lin-
ear models. SLag-1u, which corresponds to LM-1u with the largest
z-score of Moran’s I, has the largest q estimate, and SLag-2a, which
corresponds to LM-2a with the smallest z-score, has the smallest
q estimate.

The geographical variables are statistically significant and
adding the variables increased model fits. When the geographical
variables are added in model specifications, the z-scores of Moran’s
I are smaller in LM models, and the q estimates are smaller in the
spatial lag models. This indicates that the geographical variables
partially account for network autocorrelation. This may also imply
that the magnitudes of the geographic variables could be overesti-
mated (or underestimated) unless network autocorrelation is
odity flows with incorporating network autocorrelation in spatial interac-
ters, Environment and Urban Systems (2012), http://dx.doi.org/10.1016/
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appropriately accounted for. Chun (2008) discusses that the net-
work weight matrix specification is defined based on CD and IOs.
Hence, conducting further investigation may find how the effects
of CD and IO variables behave when a network autocorrelation is
incorporated in a model specification.

However, there are some limitations in this analysis. First, since
this study uses the total amounts of the interregional commodity
flows in the US; different commodity types may lead to different
patterns in their interregional flows (for example, Ham, Kim, &
Boyce, 2005). The impact of commodity types needs further inves-
tigation. Second, this paper only applies network autocorrelation
framework to domestic commodity flows in the US. The spatial
interaction models do not include some other factors which are
important in international commodity flows, such as tariff struc-
ture and political barriers (see Anderson & van Wincoop, 2004).
Hence, these factors need to be considered when this modeling
framework is applied to interactional trades.

Conclusively, the network autocorrelation framework to US
interregional commodity flows proves useful as the results confirm
that network autocorrelation needs to be explicitly accounted for
in modeling interregional commodity flows. Geographical vari-
ables based on spatial behavioral theories, including CD and IOs,
significantly improve spatial interaction models and capture a level
of network autocorrelation. Nevertheless, network autocorrelation
can still present itself in spatial interaction models and impact
parameter estimation and standard errors. Thus, spatial interaction
models should be specified to explicitly explain network autocor-
relation. It is obvious that the frameworks presented in this paper
are applicable in other areas, including passenger flows estimation
in air transportation and predicting information flows in telecom-
munications, which requires capturing the potential misspecifica-
tion in estimating flows distribution at various geographic scales
with higher reliability (Sherali & Park, 2001).
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