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Glacial landforms on the Barton and Weaver peninsulas of King George Island in the South Shetland Islands,
West Antarctica were mapped and dated using terrestrial cosmogenic 36Cl methods to provide the first quantitative
terrestrial record for late Quaternary deglaciation in the South Shetland Islands. 36Cl ages on glacially eroded and
striated bedrock surfaces range from 15.5�2.5 kyr to 1.0�0.7 kyr. The 36Cl ages are younger with decreasing
altitude, indicating progressive downwasting of the southwestern part of the Collins Ice Cap at a rate of
�12mmyr�1 since 15.5�2.5 kyr ago, supporting the previously published marine records for the timing and
estimate of the rate of deglaciation in this region.
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Understanding the past configurations and behavior of
the Antarctic ice sheets is essential for predicting future
responses in the cryosphere and for quantifying the
magnitude and timing of the Antarctic contribution to
postglacial eustatic sea level change (Bentley 1999). In
particular, the West Antarctic Ice Sheet (WAIS), much
of which is grounded below sea level and drained by
fast-flowing ice streams, is one of the key sectors to
monitor glacial responses to global warming (Mercer
1978; IPCC 2007). The WAIS of Saalian–Illinoian
(MIS 6) age, for example, collapsed catastrophically
during the Eemian–Sangamon interglacial (MIS 5)
(Mercer 1968, 1978). This collapse caused a eustatic sea
level rise of �5m above the present sea level �120 kyr
ago. Considerable debate surrounds the stability of the
WAIS throughout the Cenozoic (Kennett 1982; Webb
1989; Barrett et al. 1992). The combination of previous
WAIS instability during past warming periods, the
seeming inevitability of near-term global warming,
and the far-reaching consequences to the Earth’s eco-
systems of rapid sea-level change, motivate character-
ization of the dynamics of glaciers in West Antarctica.
In this work, we investigate glacially scoured
bedrock surfaces in the South Shetland Islands (SSIs)
to determine how ice caps near the WAIS responded
to regional/global warming after the Last Glacial
Maximum. The region was mapped and samples
were collected for terrestrial cosmogenic 36Cl surface
exposure dating.

Study area

The SSIs are on the southern flank of Drake Passage
�140 km from the Northern Antarctic Peninsula
(Fig. 1). The SSIs consist of 11 major and hundreds of
minor islands and shoals stretching northeastwards for
�230 km. The SSIs belong to part of a magmatic arc
(Scotia Arc), which is closely linked to the formation of
the Antarctic Peninsula (Smellie et al. 1984). King
George Island, the largest of the SSIs, is located in the
center of the archipelago. Most of the island is covered
by the Collins Ice Cap, which is centered on the
island and calves at sea level along most of its margin
(Fig. 1C) (Hall 2007). The Collins Ice Cap has numer-
ous outlet glaciers (Fig. 1C), including theMarian Cove
Glacier that traverses the Barton and Weaver peninsu-
las (Fig. 2). The island has a cold oceanic climate,
characteristic of maritime Antarctica, with frequent
summer rains and moderate annual thermal amplitude
(Turner et al. 1998). Recent measurements taken at
meteorological stations on King George Island show a
rapid rise in the mean annual temperature of between
�11C and �41C since 1965 (Fig. 1B) (Lagun &
Jagovkina 2004). The climate of the study area shows
sharp seasonal contrasts. During winter, high pressure
in the region of the Antarctic Peninsula is commonly
associated with cold air temperatures on King George
Island. In contrast, during summer, northerly and
northwesterly advection provides moist warm air

DOI 10.1111/j.1502-3885.2008.00069.x r 2008 The Authors, Journal compilation r 2008 The Boreas Collegium



masses to the SSIs (King & Turner 1997). Cyclonic ac-
tivity becomes greater and more frequent in summer as
a consequence of the shift in the circum-Antarctic low
pressure trough, providing the archipelago with abun-
dant precipitation (Turner et al. 2004).

The SSIs are extensively glaciated, with relatively few
ice-free areas (�40 km2). There have been few terres-
trial glacial geologic studies within the SSIs because of
their physical inaccessibility and the small number of
ice-free areas. During the Quaternary, the SSIs experi-
enced two major glaciations that resulted in a series of
marine terraces, the erosional platforms and glacial
landforms (Everett 1971; John & Sugden 1971; Birken-
majer 1981; Leventer et al. 1996; Hjort et al. 1998; Hall
2003). During the Last Glacial, the extensive ice cap
located on the northern side of King George Island
carved a deep trough, Maxwell Bay (John & Sugden

1971; Yoon et al. 1997). Since the LGM, the SSIs have
experienced progressive postglacial warming, with a
few minor limited cooling events resulting in glacier
advances (Hall 2007). As a consequence of the post-
glacial warming, large glaciated areas became ice-free,
exposing glacially striated erratics and bedrock
landforms and till deposits, which record the former
ice-cap configuration and the deglaciation history.

Ice-free areas, which are not covered by beaches or
scree, are generally strewn with erratic blocks and till,
reflecting former ice movement on King George
Island (Fig. 1C). On the Barton and Weaver peninsulas
(Fig. 2), erratics of fine-grained igneous rock are
present on volcanic bedrock, and subglacially eroded
bedforms such as roche moutonnée and striation are
abundant. With the exception of the present outlet
glacier margin, few moraine ridges are present below

Figure 1. A. Location of the South Shetland Islands in Antarctica. B. The Collins Ice Cap centered on King George Island and its glacial
drainage-basin divides (after Simoes et al. 1999). Contours, distribution of ice and outcropping rock and other geographic information are from
RADARSAT. C. Observed temperature record from 1968 to 2003 in King George Island (Lagun & Jagovkina 2004).
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the ice margin (Fig. 3). Several studies on lake sedi-
ments suggest various ages of initiation of deglaciation
on the ice-free areas of King George Island, ranging
from early to middle Holocene (Mäusbacher et al. 1989;
Mäusbacher 1991) to middle to late Holocene (Björck
et al. 1991, 1993, 1995). A recent study on the organic
materials included in patterned ground suggests that
deglaciation occurred during the middle Holocene on
the Barton Peninsula (Jeong 2006). Given the ice-cap
configuration and its downwasting style of melting,
most of the deglacial ages are minimum. In this study,
we obtain more robust ages for the deglaciation of the
Barton and the Weaver peninsulas.

Methods

Sample collection and preparation

Eleven samples were collected from glacially polished
and striated surfaces on the Barton and Weaver pe-
ninsulas (Fig. 2). The samples were collected from rela-
tively flat-lying intrusions (�top 5 cm) within the
bedrock to avoid possible cover/shielding by periglacial
debris. All the samples were collected from locations
where the angle to the skyline was o201; there was lit-

tle/no obstruction by high obstacles and the sampled
areas were very flat in the middle of surfaces away from
edge effects. Therefore no geometric corrections were
required. All the samples were processed for whole-
rock 36Cl analysis as outlined by Stone et al. (1996).
Samples were crushed and sieved to collect 250–500 mm
particle size fraction. To remove potential meteoric 36Cl
contamination, crushed samples were leached thor-
oughly, first in 18mO water and then in 10%HNO3 for
more than 12 h at room temperature. Major elements,
including U and Th, before and after leaching, were
determined by X-ray fluorescence, and B and Gd were
detected by prompt-gamma-emission spectrometry.
The samples were dissolved over 2 days in a 15M HF
and 2M HNO3 mixture at 60–701C. Approximately
1mg of chloride spike (non-terrestrial 37Cl/35Cl) was
added to each dissolved sample. Chloride was re-
covered from the sample solutions as AgCl.

36Cl determinations

The 36Cl/37Cl and 35Cl/37Cl were measured using ac-
celerator mass spectrometry (AMS) at the PRIME La-
boratory of Purdue University. The concentration of
cosmogenic 36Cl atoms was used to calculate ages using

Figure 2. Locations of glacially polished surface sampled for cosmogenic 36Cl exposure dating plotted on a modified version of the Lopez-
Martinez et al. (2002) geomorphic map of the Barton and Weaver peninsulas.
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the PRIME Laboratory program (http://www.
physics.purdue.edu/primelab/for_users/rockage.html).
Elevation-latitude scaling was based on Lal (1991) and
Stone et al. (1996), and production by muon was based
on Phillips et al. (2001). The assumed spallation

production rates for 36Cl from Ca and K are 66.8 and
154 atoms g�1 yr�1, respectively (Phillips et al. 1996,
2001). All ages were calculated using a bulk density of
2.8 g cm�3 and a neutron attenuation coefficient of
170 g cm�2. The analytical uncertainty for 36Cl ages is
assumed to be � 8% of the age (Phillips et al. 1997).

Results and discussion

The 36Cl concentrations (Table 1) were used to calcu-
late model surface exposure ages of the glacially
scoured bedrock at varying elevations. These in turn
are used to determine the downwasting rate of the
Collins Ice Cap induced by postglacial warming since
the LGM (Fig. 4). On the Barton Peninsula, the ex-
posure ages range from 15.5�2.5 kyr at the highest lo-
cation (BP-3, at 265m a.s.l.) to 1.0�0.7 kyr at the
lowest elevation (BP-9, at 41m a.s.l.). In contrast, the
exposure ages from the Weaver Peninsula are
8.8�1.1 kyr at 273m a.s.l. (WP-2) and 4.7�0.9 kyr at
241m a.s.l. (WP-1). Although the data set is relatively
small, the exposure ages are systematically younger
with decreasing altitude. We do not believe that the age
differences between sampling sites at different altitudes
can be explained by differential glacio-isostatic uplift,
since the distance between sample positions is not great
enough to produce this type of effect. Alternatively, if
there was any isostatic rebound of the peninsula, the
differential uplift of our sampling sites would be in-
cluded in the spread of our exposure ages that were in-
cluded in the linear downwasting calculation of
�12mmyr�1.

The 36Cl surface exposure ages of the glacially
scoured bedrock suggest that Marian Cove Glacier
experienced progressive downwasting due to
postglacial warming, since the LGM, at a rate of
�12mmyr�1. Given the present configuration of the
glacier and the abundant evidence for extensive glacia-
tion during the Last Glacial (John & Sugden 1971;
Yoon et al. 1997; Hall 2003), it is most likely that the ice
front was grounded below sea level at the time of initial
deglaciation. Accordingly, it is hard to find the geologic
evidence for initial deglaciation on land. The oldest ex-
posure age (BP-3) from the study area should therefore
be considered as the minimum age for deglaciation.
Some of the marine sediments around King George Is-
land were reported to be of glacial origin and occur at
depths of as much as �400m below sea level (Griffiths
& Anderson 1989; Lopez-Martinez et al. 1992; Yoon
et al. 1997). The submerged moraines, however, have
not yet been dated, but the veneered deglacial sediments
lying on the basal glacial till were reported to be
deposited at 17 kyr, based on extrapolation of sedi-
mentation rate of dated deglacial sediments (Yoon
et al. 1997). Since the terrestrial bedrock has the oldest
deglaciation age in the study area, it is likely that there

Figure 3. Typical glacial landforms within the study area. A. View
looking southwest of glaciated landforms on Barton Peninsula with
the King Sejong Research Station providing scale. A latero-frontal
moraine and multiple lines of subglacially eroded hills are located
behind the King Sejong Station. B. Roche moutonné subglacially
eroded by glacier. The ice flowed from left to right. C. View of an
outcrop (BP-8) with little weathered glacial striation on the surface.
Ice flows from left to right.
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was a �1.5 kyr time-lag after the initial deposition of
the deglacial marine deposits.

All documented terrestrial records of deglaciation in
the SSIs, most of which are from lakes, post-date the
early Holocene (Mäusbacher et al. 1989; Mäusbacher
1991). The time gap between the terrestrial lake record
and this study of deglaciation may reflect loss of the
lake archives by a glacier advance/s. The glacially
scoured peaks sampled in this study were likely exposed
as nunataks during Lateglacial or Antarctic Cold Re-
versal (Blunier et al. 1997). Alternatively, because the
lakes were formed only when the ice retreated from the
position, the maximum age of lacustrine deposits
should be younger than initial deglaciation except for
the lakes that existed in the front of the ice or in ele-
vated locations.

The 36Cl ages in our study show that the Collins Ice
Cap in the study area has progressively downwasted at
a rate of 12mmyr�1 since initial deglaciation
15.5�2.5 kyr ago. Nakada & Lambeck (1988) argue
that the temporal pattern of deglaciation may explain
the pattern of global sea level changes resulting from
Antarctica meltwater input. Specifically, the WAIS and
Antarctic Peninsula Ice Sheet are key sectors for
watching the meltwater input into the ocean, because
most of the glaciers on both areas are grounded below
sea level and, thus, most susceptible to global warming
and consequent sea level rising. Conway et al. (1999)
and Stone et al. (2003) suggested that the WAIS
experienced progressive thinning throughout the Holo-
cene to the present. However, there is a contrasting
suggestion on the deglaciation pattern of both sides of
the Antarctic Peninsula only 140 km far away from the
SSIs. Using cosmogenic surface exposure dating of
glacial erratics, Bentley et al. (2006) suggested that ice
thinning of the western side of the Antarctic Peninsula
was almost complete to its present configuration by the
early Holocene, while the thinning of ice on the eastern
side was under way up to the late Holocene, i.e. like
other WAIS areas. Given the data presented here, the
study area is more like other WAIS areas and the
eastern side of the Antarctic Peninsula in the temporal
pattern of deglaciation which has been under the
continuous thinning of ice until the present day.

The Marian Cove Glacier, which reaches into the sea
(Fig. 2), has experienced a dramatic retreat of the ice
front of �1700m over the past 50 years near the
Marian Cove section (Lee et al. 2008). Although the
present retreat rate is difficult to compare with the
thinning rate of the past glacier, the observed recent
retreating rate of �33myr�1 is approximately three
times higher than the long-term downwasting rate of
the ice. This might reflect the accelerating effect of glo-
bal warming in the study area. Moreover, this warming
trend around the study area is well documented by

Table 1. 36Cl ages and chemical compositions of glacially striated bedrock samples in King George Island, Antarctica.

Sample
ID

Latitude
(�0.0011N)

Longitude
(�0.0011E)

Altitude
(m a.s.l.)

K2O
(%)

CaO
(%)

Cl (ppm) Spallation
production (%)

36Cl/35Cl (10�15)w 36Cl exposure
age (kyr)‰

BP-1 62.227 58.771 0.123 0.21 10.7 316.00 75.46 36.8�4.0 3.4�0.7
BP-2 62.225 58.771 0.165 0.28 10.6 344.91 75.21 100.8�16.5 11.9�2.3
BP-3 62.224 58.748 0.265 0.27 10.7 238.58 76.66 142.3�20.6 15.5�2.5
BP-4 62.225 58.779 0.107 0.35 10.6 156.85 78.49 49.3�8.2 5.0�1.2
BP-5 62.225 58.771 0.124 0.19 10.8 856.41 72.93 37.8�4.8 3.8�0.9
BP-6 62.227 58.768 0.164 0.20 10.2 792.55 73.13 65.7�10.6 7.6�1.6
BP-7 62.223 58.764 0.120 0.22 10.6 392.13 74.75 26.2�6.5 2.0�1.0
BP-8 62.216 58.756 0.062 0.26 10.8 99.27 81.13 25.6�6.4 1.9�1.0
BP-9 62.214 58.744 0.041 0.21 10.8 54.31 85.21 20.5�4.8 1.0�0.7
WP-1 62.197 58.776 0.231 0.20 10.7 17.95 92.19 63.0�11.7 4.7�1.1
WP-2 62.197 58.777 0.273 0.21 10.7 13.65 93.56 106.8�9.1 8.8�0.9

wAfter subtraction of the radiogenic 36Cl/35Cl.
‰All ages assume no erosion.

Figure 4. 36Cl exposure ages of glacially striated surfaces plotted
versus altitude. Nine samples (BP-1 through to BP-9) were analysed
on the Barton Peninsula and two samples (WP-1 and WP-2) on the
Weaver Peninsula. Exposure ages decrease consistently with decreas-
ing altitude, implying that the ice began to melt after the global LGM
and, since 15.5�2.5 kyr (BP-3), ice progressively downwasted over
time. The apparent rate of ice downwasting is 12mmyr�1 on the
Barton Peninsula and 10mmyr�1 on the Weaver Peninsula.
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observed temperature change over the past 50 years at
the Bellingshausen Meteorological Station (Fig. 1B)
(Lagun & Jagovkina 2004). Alternatively, the rapid re-
treat rate of the Marian Cove Glacier might reflect the
sensitive response of a tidewater section of the glacier to
rising sea level.

Conclusions

This study provides the first systematic constraints on
the postglacial thinning rate of the Collins Ice Cap since
the LGM on King George Island of the SSIs, West
Antarctica. Determining the timing of deglaciation
using geomorphic and terrestrial cosmogenic 36Cl s
urface exposure dating from the bedrock at varying
elevations demonstrates that the ice has progressively
melted down since the LGM. All the apparent cosmo-
genic 36Cl abundances from the glacially striated
bedrock surfaces yield post-LGM ages ranging from
15.5�2.5 kyr to 1.0�0.7 kyr, their model 36Cl exposure
ages becoming younger with decreasing altitude. The
maximum terrestrial deglacial age of 15.5�2.5 kyr pre-
dates any ages of initial deglaciation from the terrestrial
records and supports the previously reported deglacial
age of 17 kyr from marine records. Our results suggest
that glaciers on King George Island began to melt
down no later than 15.5�2.5 kyr ago and have been
progressively downwasted since the LGM up to the
present at a long-term rate of �12mmyr�1 on the
Barton and the Weaver peninsulas.
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Mäusbacher, R. 1991. Die jungquartäre Relief- und Klimageschichte
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