Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

PAR"	Applied 6	Geochemi	istry
ELSEVIER	JOURNAL OF THE INT GEO	ERNATIONAL ASSOCIA OCHEMISTRY	TION OF
Executive Editor	Ros Fuca, Aberystwyth	M. Houson, Reading	K. S. SAVAGE, Nashville
Associate Editors	E. L. ANZER, Nottingham	I. Humannes, Calgary	R. R. SEAL II. Restow
	L. AQUENA Renney H. Annanomen, Restanti	A. Kensten, Maing A. Kensten, Restor	O. SILINIS, Kalmar B. R. T. Sincourt, Cornallia
	S. Borman, Leeds	N. D. Lt. Kowloon	D. B. Sums, Denver
	I. CARRWHOGHT, Chayton	W. B. Lvoss, Columbus	I., SULLIVAN, Linnore
	Z. CEIDAR, Aniara P. N. I. Conversion Potters	P. B. MCMAION, Denter	Y. TARDY, Nailloux
	A. DANDESSON, Linkowing	L. A. MUNK, Anchonize	A VENGORE Durham
	W. M. Ezantses, Oxford	B. NOWENYA, Edinburgh	B. WANG, Anchorage
	G. Finarranz, Indianapolis	M. Novak, Pruha	R. B. WANTY, Denver
	D. Forms, Ottawa	J. C. Pertr, Gif-Sue-Frette	R. WATKINS, Perth
	D. Googer, Wallingford	R. M. Pierw, Miami	J. WEDTTER DECRES, Christense
	J. E. GRAY, Denver	C. REIMANN, Trandheim	
	R. S. Hatosov, Research Triangle Park	A. N. ROYCHOUBERRY. Stellenbosch	k.
B.G. RAWLINS, G sediments from g H. HOLMSTRAND, for the anthropo K. CHEUNG, P. KI	. TURNER, I. MOUNTENEY and G. WH geochemistry	DMAN: Estimating specific surfa DERSSON and Ö. GUSTAFSSON: Iane R. ARAVENA: Major ion and isot	ce area of fine stream bed 12 Chlorine isotope evidence 13 ope geochemistry of fluids
B.G. RAWLINS, G sediments from g H. HOLMSTRAND, for the anthropo K. CHEUNG, P. Ki and gases from c J. ZHAO, Z. LIAO,	TURNER, I. MOUNTENEY and G. WI pechemistry. Z. ZENCAK, M. MANDALAKIS, P. ANJ genic origin of tris-(4-chlorophenyl)meth ASSEN, B. MAYER, F. GOODARZI and I oalbed methane and shallow groundwat J. ZULNG, P. CHEVE, C. YANO, A. C.	DMAN: Estimating specific surfations and Ö. GUSTAFSSON: Info. R. ARAVENA: Major ion and isot fer wells in Alberta, Canada. IROSTOWSKA, H. ZUANG and A	ce area of fine stream bed 12: Chlorine isotope evidence 13: ope geochemistry of fluids 13: GRACIAA: Comparative
B.G. RAWLINS, G sediments from g H. HOLMSTRAND, for the anthropo K. CHEUNG, P. Kt and gases from c J. ZHAO, Z. LIAO, studies on compo	TURNER, I. MOUNTENEY and G. WI geochemistry. Z. ZENCAK, M. MANDALAKIS, P. ANI genic origin of tris-(4-chlorophenyl)meth ASSEN, B. MAYER, F. GOODARZI and J. MAYER, F. GOODARZI and L. ZUANG, P. CREUX, C. YANO, A. O unds occluded inside asphaltenes hierarc	DMAN: Estimating specific surfa- persson and Ö. GUSTAFSSON: ane. R. ARAVENA: Major ion and iot re wells in Alberta, Canada. ROSTOWSKA, H. ZUANG and A chically released by increasing am	ce area of fine stream bed Chlorine isotope evidence 13 ope geochemistry of fluids GRACIAA: Comparative ounts of H ₂ O ₂ /CH ₂ COOH 13
B.G. RAWLINS, G sediments from a H. HOLMSTRAND, for the anthropo K. CHIUNG, P. Ki, and gases from c J. ZHAO, Z. LIAO, studies on comp Y. YANES and CJ and mass balance	TURNER, I. MOUNTENEY and G. WI geochemistry. Z. ZENCAK, M. MANDALAKIS, P. ANI genic origin of tris-(4-chlorophenyl)meth LASSEN, B. MAYER, F. GOODARZI and J. colledo methane and shallow groundwat L. ZHANG, P. CREEX, C. YANO, A. CI sunds occluded inside asphaltenes hierare . YAPP: Indoor and outdoor urban atmo- te.	DMAN: Estimating specific surfa- DERSSON and Ö. GUSTAFESON: and: R. ARAVENA: Major ion and isot re wells in Alberta, Canada. IROSTOWSKA, H. ZHANG and A chically released by increasing am ospheric CO ₂ : Stable carbon isot	ce area of fine stream bed 12 Chlorine isotope evidence 13 13 13 14 15 15 15 15 15 15 15 15 15 15
B.G. RAWLINS, G sediments from g H. HOLMSTRAND, for the anthropo K. CHEUNG, P. Ki and gases from c J. ZitAO, Z. LIAO, studies on comp Y. YANES and CJ and mass balance J.L. VANDERZALJ different manage	TURNER, I. MOUNTENEY and G. WI geochemistry. Z. ZENCAK, M. MANDALAKIS, P. AN genic origin of tris-(4-chlorophenylmeth LASEEN, B. MAYER, F. GOODARZI and I and the state of the state of the state outlood methane and shallow groundwat I. ZHNAG, P. CHENZ, C. YANG, A. C. Sunds occluded inside asphaltenes hierarc VAPE: Indoor and outdoor urban atm c. a. D.W. PACH, K.E. BARRY and P.J. d aquifer recharge operations for injectio	DMAN: Estimating specific surfa- mersson and Ö. GUSTAFSSON: ane. R. ARAVENA: Major ion and iso re wells in Aberta, Canada. ircostowska, H. ZHANG and A hically released by increasing am oopheric CO ₂ : Stable carbon isot DILLON: A comparison of the of furban stortwater in a carb	ce area of fine stream bed 12 Chlorine isotope evidence 13 ope geochemistry of fluids 14 CGRACLAA: Comparative 15 0unts of H ₂ O ₂ /CH ₂ COOH 13 ope constraints on mixing 13 geochemical response to 13 13 14 15 15 15 15 15 15 15 15 15 15
B.G. RAWLINS, G sediments from j H. HOLMSTRAND, for the anthropo K. CHEUNG, P. Ki and gases from c. J. ZUAO, P. Ki and gases form c. J.L. VANDERZALJ different manage L. LESYEN, B. JO. metal diagenesis	TURNER, I. MOUNTENEY and G. WI geochemistry. Z. ZIENCAR, M. MANDALAKIS, P. AN genic origin of tris-(4-chlorophenyl)meth icoalbed methane and shallow groundwat L. ZIENG, P. CREUX, C. YANO, A. Ci hunds occluded inside asphaltenes hierarc v.YAPP. Indoor and outdoor urban atm e	DMAN: Estimating specific surfa- DERSSON and Ö. GUSTATSSON: ane. R. ARAVENA: Major ion and isot er wells in Alberta, Canada IROSTOWSKA, H. ZIANG and A chically released by increasing am ospheric CO ₂ : Stable carbon isot DILLON: A comparison of the on of urban stortwater in a carb river (northern France).	ce area of fine stream bed 12 Chlorine isotope evidene 13 ope geochemistry of fluids 13 . GRACIAA: Comparative ounts of H ₂ O ₂ /CH ₂ COOH 13 ope constraints on mixing 13 geochemical response to 13 s and A. BOUGHRIET: D
B.G. RAWLINS, G sediments from a H. HOLMSTRAND, for the anthropo K. CHUNG, P. Kr and gases from c. J. ZHAO, Z. LIAO, studies on compu- y. YANES and C.J. AMDREAL, and mass balanc aldifferent manage L. LESYEN, B. LOT metal diagenesis NAMEFFELD, K. (PAHS) in Permi	TURNER, I. MOUNTENEY and G. WI geochemistry. .Z. ZENCAK, M. MANDALAKIS, P. AN genic origin of tris-(4-faltorophenylmed LASSEN, B. MAYER, F. GOODARZI and J. Coulted methane and shallow groundwat L. ZIANG, P. CREUX, C. YANO, A. C. Jounds occluded inside asphaltenes hierare . YAPP: Indoor and outdoor urban atm . YAPP: Indoor and outdoor urban atm . G. W. PAGE, K.E. BAREY and P.J. a quifer recharge operations for injectic ratio-CARANA, G. BILLON, P. RECOUR in contaminated sediments of the Dedle GRICE, R.E. SUMMONE, L.E. HAYS an and Triassis boundary sections.	DMAN: Estimating specific surfa- DERSSON and Ö. GUSTAFSSON: and: R. ARAVENA: Major ion and iot re wells in Alberta, Canada. IROSTOWSKA, H. ZHANG and A chically released by increasing am ospheric CO ₂ : Stable carbon isole DILLON: A comparison of the of urban stormwater in a carb ct., B. OUDDANE, O. MIKKULSE river (northern France). d C. CAO: Significance of polycyc	ce area of fine stream bed 12 Chlorine isotope evidence 13 ope geochemistry of fluids 13 GRACIAA: Comparative ounts of H ₂ O ₂ /CH ₂ COOH 13 ope constraints on mixing 13 geochemical response to 13 sonate aquifer
B.G. RAWLINS, G sediments from p H. HOLMSTRAND, for the anthropo K. CHUNSO, P. KI and gases from c J. ZHAO, Z. LIAO, studies on compu- different manage J.L. VANDERZALJ different manage L. LESVEN, B. LOI metal diagenesis B. NABEFILIO, K. (PAHS) in Permi B. GARCIA, V. Bis F. HARSHLENE F.	TURNER, I. MOUNTENEY and G. WI geochemistry. Z. ZENCAR, M. MANDALAKIS, P. AN genic origin of tris-(4-chlorophenylmeth LASSEN, B. MAYER, F. GOODARZE and J. Couldo drethane and shallow groundwath L. ZILANG, P. CRIUX, C. YANG, A. Cr sunds occluded inside asphalteness hierare (J. YAPE: Indoor and outdoor urban atm f. D. W. PACE, K.E. BARRY and P.J. a quifer recharge operations for injecti- rel to CARANA, G. BILLON, P. RECCU in contaminated sediments of the Deide GRICE, R.E. SUMMONS, L.E. HAYS and and Triassic boundary sections. AUMONT, E. PERFITH, V. ROUCHION, XUMONT, E. PREFITH, V. ROUCHION, AUMONT, E. PREFITH, V. ROUCHION,	DMAN: Estimating specific surfa- DERSSON and Ö. GUSTAFISSON: and: R. ARAVENA: Major ion and isot rer wells in Alberta, Canada. IROSTOWSKA, H. ZHANG and A chically released by increasing am ospheric CO ₂ : Stable carbon isot DILLON: A comparison of the of urban stormwater in a carb cr. B. OUDDANE, O. MIKKELSET fiver (ourblern France) d C. CAO: Significance of polycyc D. BLANCHET, P. OGER, G. Di O CO ₂ sequestration by olivine:	ce area of fine stream bed 12 Chlorine isotope evidence 13 ope geochemistry of fluids 13 . GRACIAA: Comparative ounts of H ₂ O ₂ /CH ₂ /COM 13 ope constraints on mixing 13 . geochemical response to 13 . geochemical response to 14 . geochemical response to 14 . geochemical response to 15 . ge
B.G. RAWLINS, G sediments from q for the anthropo for the anthropo K. CHUNNE, P. KI. and gases from c J. ZHAO, Z. LIAO, studies on compo- tion of the sediment of the sediment of the anthropology of the metal diagenesis B. NAMERICAL S. M. (PAHS) in Permi B. GARCIA, V. Bir F. HAESELLER: F K. SAMBORSKA at earbonate aquife	TURNER, I. MOUNTENEY and G. WI geochemistry. Z. ZENCAK, M. MANDALAKIS, P. As genic origin of tris-(4-chlorophenylmet) LASSEN, B. MAYER, F. GOODARZI and couldo dethane and shallow groundwat L. ZHANG, P. CREUX, C. YANG, A. C. ounds occluded inside asphaltenes hierarc V. YAPF. Indoor and outdoor urban atm w. a. D.W. PAGE, K.E. BARRY and P.J. d aquifer recharge operations for injectio RINO-CARANA, G. BILLON, P. RECOLU and Triassic boundary sections. AUMONT, E. PREFITTI, V. ROUCHON, XPROFINENT, S. and "O in disolved suit reposed to intense groundwater exploi	DMAN: Estimating specific surfa- mer. Solver and Ö. GUSTATSSON: and Defension and isolver wells in Aberta, Canada, ircostrowska, H. ZitaNo; and A bically released by increasing am ospheric CO ₂ : Stable carbon isol DRLLON: A comparison of the of urban stormwater in a carb tr, B. OUDDANE, O. MIKKILSET river (northern France) D. BLANCHET, P. OGER, G. Di of CO ₂ sequestration by olivine: late as tracers of hydrogeochemic. Iate as tracers of hydrogeochemic. Iate as tracers of hydrogeochemic.	ce area of fine stream bed 12 Chlorine isotope evidence 13 ope geochemistry of fluids 14 . GRACIAA: Comparative ounts of H ₂ O ₂ /CH ₂ COOH 13 geochemical response to 13 geochemical response to 13 s and A. BOUGURENET: On 13 fic aromatic hydrocarbons 13 noMASET, AY. HUC and Potential, quantification 13 a evolution of the Triasis 13 southern Poland) 13 14 15 15 16 17 17 17 17 17 17 17 17 17 17
B.G. RAWLINS, G sediments from 1 Hot INFERAND, for the anthropo K. CHUUNG, P. KL and gases from c J. ZHAO, Z. LIAO, studies on compo- tion of the sediment of the sediment different manage L. LISEVEN, B. LOU metal diagenesis B. NABREFELD, K (PAHS) in Permi Metal Science, F K. SAMBORSKA an F. HAUSTELER, F K. SAMBORSKA an Carbonate aquife Z. CONG, S. KAM	TURNER, I. MOUNTENEY and G. WI geochemistry. Z. ZENCAK, M. MANDALAKIS, P. AN genic origin of tris-(4-chlorophenyl)meth LASSEN, B. MAYER, F. GOODARZI and J. Coulds on the and shallow groundwath L. ZHNAG, P. CERUX, C. YANG, A. C. bunds occluded inside asphaltenes hierarc V. YAPE: Indoor and outdoor urban atmu- w. 4. D.W. PACE, K.E. BARRY and P.J. d aquifer recharge operations for injection ratio contaminate sediments of the Dedle GRICE, R.E. SUMMONS, L.E. HAYS an and Triassic boundary sections AUMONT, E. PREFITTI, V. ROUCHON, XPEFINITA, S. MALAS, ¹⁴ A and ¹⁶ O in dissolved shall sexposed to intense groundwater caploi p. Y. ZHANG and X. Li: Atmospheric w	DMAN: Estimating specific surfa- mersson and Ö. GUSTATSSON: ane. R. ARAVENA: Major ion and iso- ter wells in Alberta, Canada. (ROSTOWSKA, H. ZHANG and A bically released by increasing am oopheric CO ₂ : Stable carbon isot DILLON: A comparison of the of Urbans stormwater in a carb tr. B. OUDDANE, O. MIKKIESET river (northern France) d. C. CAO: Significance of polycyc D. BLANCHET, P. OGTR, G. D. of CO ₂ sequestration by olivine: fate as tracers of hydrogeochemic. fate as tracers of hydrogeochemic. fate as tracers of hydrogeochemic.	ce area of fine stream bed 12 Chlorine isotope evidence 13 ope geochemistry of fluids 14 Chlorine isotope evidence 15 00 constraints of H ₂ O ₂ CH ₃ COOH 13 ope constraints on mixing 13 geochemical response to 13 a and A. Bot/GIRUET: On 13 13 13 13 13 13 13 14 14 15 15 15 16 16 17 17 17 18 19 19 19 19 19 10 10 10 10 10 10 10 10 10 10
B.G. RAWLINS, G sediments from q I. HOL MYERAND, for the anthropo K. CHUNN, P. KI and gases from c J. ZHAO, Z. LIAO, studies on comp- studies on comp- studies on comp- different manage L. USAVERZALJ different manage L. USAVERZALJ different manage B. NABBEFELD, K (PAHS) in Permi M. GARCIA, V. BI F. HAUSTERF F K. SAMBORKA ar K. SAMBORKA ar athenia equile Z. CONG, S. KANS S. QUAZI, D. SAR athenia pesticid	TURNER, I. MOUNTENEY and G. WI geochemistry. Z. ZENCAK, M. MANDALAKIS, P. AN genic origin of tris-(4-chlorophenylmet) LASSEN, B. MAYER, F. GOODARZI and J. Couldo methane and shallow groundwa L. ZIKAG, P. CEEUX, C. YANO, A. C. Dunds occluded inside asphaltenes hierarc V. YAPF. Indoor and outdoor urban atme w. M. D.W. PACE, K.E. BARRY and P.J. d aquifer recharge operations for injectic renton-transfer sectors. MINOT, E. FERENTI, V. ROUCHON, XPEFIETT, V. ROUCHON, Speriments and geochemical modelling of d. S. HALAS: ¹⁸ Sun ¹⁰ O in dissolved sulf respond to intense groundwater caplor a, Y. ZILANO and X. Li: Atmospheric w KAR and R. DATAS: Effect of soil aging contaminated soils.	DMAN: Estimating specific surfa- merssion and Ö. GUSTATSSON: and R. ARAVENA: Major ion and iso- ter wells in Alberta, Canada (ROSTOWSKA, H. ZHANG and A hically released by increasing and opheric CO ₂ : Stable carbon isoti DILLON: A comparison of the of Orban stormwater in a carb ter, B. OUDDANE, O. MIKKIESEP river (outhern France). d C. CAO: Significance of polycyce D. BLANCHET, P. OUTR, G. D. of CO ₂ sequestration by olivine: fate as tracers of hydrogeochemic. Itation (Okusz-Zawiercie region, et deposition of trace elements to g on arsenic fractionation and bi	ce area of fine stream bed 12 Chlorine isotope evidence 13 ope geochemistry of fluids 13 CGRACLAA: Comparative 13 ounts of H ₂ O ₂ CH ₂ COOH 13 ope constraints on mixing 13 geochemical response to 13 geochemical response to 13 n and A. BOUGINENT: On 13 fic aromatic hydrocarbons 13 ROMART, AY. Huc and Potential, quantification. 13 al evolution of the Triassis 13 o central Tibetan Plateau. 14 oaccessibility in inorganic 14
B.G. RAWLINS, G sediments from a H. HOLMSTRAND, for the anthropo K. CHUUNG, P. K. and gases from c. J. ZHAO, Z. LIAO, studies on compu- and mass balane J. Z. VANDERZALI and mass balane J.L. VANDERZALI different manage L. LESYEN, B. LOI metal diagenesis B. NABBEFELD, K. P. HATSFLERF, B. F. HATSFLERF, B. F. HATSFLERF, B. K. SAMBORSKA at carbonate aquife Z. CONG, S. KANS Z. OL, S. KANS C.J. BROWS and J. SAGUEST, D. SAR arsenical pestici C.J. BROWS and J.	TURNER, I. MOUNTENEY and G. WI geochemistry. Z. ZENCAK, M. MANDALAKIS, P. AN genic origin of tris-(4-follorophenyf)met LASSEN, B. MAYER, F. GOODARZI and U. STANG, P. CREUX, C. YANO, A. C. Dunds occluded inside asphalenes hierarc unds occluded inside asphalenes hierarc v. YAPE: Indoor and outdoor urban atme w. M. D. W. PACE, K.E. BARREY and P.J. d aquifer recharge operations for injectic rRINO-CAENANA, G. BLLON, P. RECOUT in contaminated sediments to the Dedde GRICE, R.E. SUMMONS, L.E. HAYS an anTriassic boundary sections. AUMONT, E. PERFETTI, V. ROUCHON, XPETIMENTS and ¹⁰ On disolved sulf r exposed to intense groundwater exploi 9, Y. ZIANDE and X. Li: Atmospheric w exat and R. DATAY: Effect of soil aging e contaminated soils.	DMAN: Estimating specific surfa DERSSON and Ö. GUSTAFSSON: Jane. R. ARAVENA: Major ion and iot re wells in Alberta, Canada. IROSTOWSKA, H. ZIANG and A chically released by increasing am ospheric CO ₂ : Stable carbon isol DILLON: A comparison of the on of urban stormwater in a carb on of urban stormwater in a carb tr, B. OUDDANE, O. MIKKILLER Tiver (coorthern France). d C. CAO: Significance of polycyc D. BLANCHET, P. OUTR, G. DJ. B. BLANCHET, P. OUTR, G. DJ. B. BLANCHET, P. OUTR, G. G. D. BLANCHET, P. OUTR, G. G. D. BLANCHET, P. OUTR, G. G. D. BLANCHET, G. OUTR, G. DJ. and C. CAO: Significance of polycyc D. BLANCHET, P. OUTR, G. DJ. G. CO, sequestration by olivine: fate as tracers of hydrogeochemic tation (Olkusz-Zawiercie region, set deposition of trace elements to g on arsenic fractionation and bi otential aquifer storage and reco	ce area of fine stream bed Chlorine isotope evidence 13 ope geochemistry of fluids 13 . GRACIAA: Comparative ounts of H ₂ O ₂ /CH ₂ COOH 13 ope constraints on mixing 13 . GRACIAA: Comparative ounts of H ₂ O ₂ /CH ₂ COOH 13 ope constraints on mixing 13 . geochemical response to 13 sonate aquifer. 13 sonate aquifer. 13 fic aromatic hydrocarbons 13 fic aromatic hydrocarbons 13 nomARAT, A-Y, Huc and 13 opetential, quantification. 13 al evolution of the Triassie southern Poland) 13 14 occessibility in inorganic 14

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Applied Geochemistry 25 (2010) 1339-1349

Contents lists available at ScienceDirect

Applied Geochemistry

journal homepage: www.elsevier.com/locate/apgeochem

Indoor and outdoor urban atmospheric CO₂: Stable carbon isotope constraints on mixing and mass balance

Yurena Yanes*, Crayton J. Yapp

Huffington Department of Earth Sciences, Southern Methodist University, 3225 Daniel Ave., Rm 207 Heroy Hall, Dallas, TX 75275-0395, USA

ARTICLE INFO

Article history: Received 3 December 2009 Accepted 5 June 2010 Available online 10 June 2010 Editorial handling by R.S. Harmon

ABSTRACT

From July to November 2009, concentrations of CO2 in 78 samples of ambient air collected in 18 different interior spaces on a university campus in Dallas, Texas (USA) ranged from 386 to 1980 ppm. Corresponding δ^{13} C values varied from -8.9% to -19.4%. The CO₂ from 22 samples of outdoor air (also collected on campus) had a more limited range of concentrations from 385 to 447 ppm (avg. = 408 ppm), while δ^{13} C values varied from -10.1% to -8.4% (avg.=-9.0%). In contrast to ambient indoor and outdoor air, the concentrations of CO₂ exhaled by 38 different individuals ranged from 38,300 to 76,200 ppm (avg. = 55,100 ppm), while δ^{13} C values ranged from -24.8% to -17.7% (avg. = -21.8%). The residence times of the total air in the interior spaces of this study appear to have been on the order of 10 min with relatively rapid approaches (~30 min) to steady-state concentrations of ambient CO₂ gas. Collectively, the δ^{13} C values of the indoor CO₂ samples were linearly correlated with the reciprocal of CO₂ concentration, exhibiting an intercept of -21.8%, with $r^2 = 0.99$ and p < 0.001 (n = 78). This high degree of linearity for CO₂ data representing 18 interior spaces (with varying numbers of occupants), and the coincidence of the intercept (-21.8%) with the average δ^{13} C value for human-exhaled CO₂ demonstrates simple mixing between two inputs: (1) outdoor CO₂ introduced to the interior spaces by ventilation systems, and (2) CO_2 exhaled by human occupants of those spaces. If such simple binary mixing is a common feature of interior spaces, it suggests that the intercept of a mixing line defined by two data points (CO2 input from the local ventilation system and CO_2 in the ambient air of the room) could be a reasonable estimate of the average δ^{13} C value of the CO₂ exhaled by the human occupants. Thus, such indoor spaces appear to constitute effective "sample vessels" for collection of CO₂ that can be used to determine the average proportions of C_3 and C_4 -derived C in the diets of the occupants. For the various groups occupying the rooms sampled in this study, C₄-derived C appears to have constituted ${\sim}40\%$ of the average diet.

The average concentration of outdoor Dallas atmospheric CO₂ was ~17 ppm higher than the average of CO₂ concentrations measured on the same campus 10 a ago. In addition, Dallas outdoor CO₂ concentrations at both times were higher than the contemporaneous global atmospheric CO₂ concentrations. This observation, plus the fact that the increase of ~17 ppm in the average concentration of Dallas outdoor CO₂ was comparable to the global increase of ~18 ppm over the same 10-a interval, is consistent with a significant role for urban CO₂ "factories" in the global atmospheric CO₂ budget.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A number of recent studies have examined patterns of C isotope variation in the CO₂ of urban atmospheres, which are concentrated sources of anthropogenic CO₂ (e.g. Clark-Thorne and Yapp, 2003; Widory and Javoy, 2003; Pataki et al., 2003, 2007; Zimnoch et al., 2004; Carmi et al., 2005; Newman et al., 2008). These studies of urban CO₂ are cast against the backdrop of rising global levels of tropospheric CO₂ from pre-industrial Holocene values of ~280 ppm (e.g. Friedli et al., 1989) to current concentrations of ~387 ppm (NOAA: http://www.esrl.noaa.gov/gmd/ccgg/trends/co2_data_mlo.

html). Interest in the global increase in atmospheric CO_2 is centered on its implications for changes in Earth's climate (e.g. Petit et al., 1999; Hofmann et al., 2006, 2009).

Studies of urban outdoor and/or global tropospheric CO_2 consider processes in the C cycle that operate on various temporal and spatial scales with multiple sources and sinks of CO_2 (e.g. ocean–atmosphere CO_2 exchange, plant photosynthesis and respiration, combustion of fossil fuels, etc.). In contrast, the interiors of buildings and enclosed passenger compartments of vehicles of transport are important human "habitats" in which CO_2 mixing processes could be expected to operate on short time scales with a limited number of endmembers contributing to the CO_2 in the air of those spaces. Thus far, studies of indoor CO_2 have emphasized its concentration and the implications for health, performance efficiency, etc. (e.g.

^{*} Corresponding author. Tel.: +1 214 768 3897; fax: +1 214 768 2701. *E-mail address*: yyanes@smu.edu (Y. Yanes).

^{0883-2927/\$ -} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.apgeochem.2010.06.004

Lee and Chang, 1999, 2000; Daisey et al., 2003; Shendell et al., 2004; Mendell and Heath, 2005; Roberson, 2006; Fromme et al., 2007; Santamouris et al., 2008; and references therein). To the best of the present authors' knowledge, little attention has been given to the relationship between the concentration and stable C isotope composition of indoor CO_2 (e.g., Widory and Javoy, 2003; Affek and Eiler, 2006).

If outdoor CO_2 and CO_2 respired by human occupants are the only CO_2 sources that mix in the air of an indoor environment, the CO_2 mixing process should manifest itself in easily understood variations of the concentrations and ${}^{13}C/{}^{12}C$ ratios of the indoor CO_2 . These indoor CO_2 variations may in turn be used to deduce the average isotopic composition of the respired CO_2 and thus the average diets of the human occupants. In the current study, new data are presented on the concentration and C isotope composition of human-exhaled CO_2 and CO_2 in indoor and outdoor air. The data are interpreted in terms of the atom balance of simple mixing processes and the flux balances of open systems (i.e., ventilated rooms). The samples were collected on a university campus in Dallas, Texas, USA.

The new measurements of outdoor urban atmospheric CO_2 are compared with corresponding data measured ~10-a ago (Clark-Thorne and Yapp, 2003). The two sets of data are discussed briefly in the context of the change in the global concentration of tropospheric CO_2 .

2. Methods

2.1. Collection of indoor and outdoor ambient air samples and extraction of CO_2

Samples of indoor and outdoor air were collected using evacuated vacuum flasks of known volume (1940 mL and 1948 mL) [e.g. Clark-Thorne and Yapp, 2003]. Indoor samples (n = 78) were collected at various locations on the campus of Southern Methodist University (SMU) in Dallas, Texas (Fig. 1). Specific locations of indoor samples are indicated by letters in Fig. 1 and Table 3. A total of 22 outdoor samples were collected at seven different sites around the SMU main campus as shown by numbers in Fig. 1 and Table 4. Samples were collected at different times of the day with variable environmental conditions (Table 4). All the indoor and the majority of the outdoor (n = 17) atmospheric CO₂ samples were collected about 1-2 m above local ground level (Tables 3 and 4). Five outdoor atmospheric CO_2 samples were collected on the roof of Moody parking garage (~18 m above ground level) located at the intersection of Airline Road and SMU Blvd. on the SMU campus (site 6 in Fig. 1). Temperature and relative humidity at the sites were measured for each sample. Other environmental variables such as wind direction and speed, and total atmospheric pressure were obtained from the web site (http://www.weather.gov/data/ obhistory/KDAL.html) maintained by the National Weather Service at nearby Love-Field Airport, Dallas, Texas (Tables 3 and 4).

For measurement of concentration and isotopic composition, the method described by Clark-Thorne and Yapp (2003) was used to extract CO₂ from air collected in ~ 2 L vacuum flasks. For that work, the accuracy and precision of the extraction method (for CO₂ concentrations) were established by extracting CO₂ from artificial gas mixtures prepared with CO₂ and non-condensable gas in known proportions and found to be ±1 ppm (on a molar basis). Moreover, a precision of ±1 ppm was obtained for CO₂ in duplicate samples of outdoor air collected in \sim 2 L vacuum flasks (Clark-Thorne and Yapp, 2003).

For indoor CO_2 samples, there is an additional consideration in the determination of the molar mixing ratio (as ppm). According to the SMU Office of Facilities, Management and Sustainability, rooms (except for laboratories) in campus buildings are maintained at a very slight constant positive pressure relative to outdoor air. This indoor air pressure is only about 0.012% higher than outdoor air pressure. Thus, for indoor air samples, CO₂ concentrations (expressed as ppm) that were determined by normalizing a measured number of moles of CO₂ to the total moles of dry gas in a ~2 L flask (as calculated using outdoor air pressures) would result in a nominal value for the CO₂ concentration which was high by a factor of 1.00012. For nominal indoor CO₂ concentrations as high as ~2000 ppm, this would increase the uncertainty by ~0.2 ppm. This very small magnitude of additional uncertainty in the concentrations of indoor samples of CO₂ does not affect the conclusions of the study.

2.2. Collection of human-exhaled air and extraction of CO_2

The collection of human-exhaled air required a procedure that differed somewhat from the foregoing vacuum flask method. Therefore, somewhat more detailed descriptions of the procedure for collection and extraction of human-exhaled CO₂ are presented. Air exhaled by each of 38 individuals from the SMU community was collected using a 38.6 mL u-shaped Pyrex tube with a vacuum stopcock at each end. To purge the ambient air in the tube and replace it with CO₂-rich human respired air, each individual exhaled for 10 s through a disposable plastic beverage straw attached to the upstream side of the u-tube. When 10 s of slow, continuous exhalation through the u-tube had elapsed, the stopcock was quickly closed on the downstream side, the individual retreated from the straw, and the stopcock on the upstream side of the u-tube was then quickly closed. Thereafter, the closed u-tube was attached to a high vacuum extraction line via a ground glass joint connected to the downstream stopcock, and the u-tube portion of the sample vessel was immersed in a liquid N2-filled dewar for 40 min to freeze CO₂ and H₂O out of the exhaled air sample. At the end of the 40-min interval (with the u-tube still maintained at the temperature of liquid N₂), non-condensable gases in the u-tube were slowly passed through a liquid N₂-cooled multiple coil trap to determine if any CO₂ and/or H₂O remained to be frozen out of the air sample. No CO₂ or H₂O were detected in the multiple coil trap in either of the extractions from two different samples of human-exhaled air. Thus, it was concluded that all detectable exhaled CO₂ and water is frozen in the u-tube during the 40 min at the temperature of liquid N₂. Subsequent extractions of CO₂ from air exhaled by people into the u-tube did not use the extra multiple coil trap as part of the extraction procedure. After pumping away non-condensable gases to separate them from the frozen CO₂ and H₂O, the CO₂ was processed as described by Clark-Thorne and Yapp (2003).

To calculate concentrations of human-exhaled CO₂ as molar ppm of dry air, it is necessary to know the volume of the collection tube (38.6 mL), the temperature of the sample air, the relative humidity of the sample air, and the total ambient air pressure. Relative humidity of the air exhaled by people into the u-tube was assumed to be 100%. Total ambient air pressure was determined from values of sea level corrected pressure reported by the United States National Weather Service at nearby Love Field, Dallas, Texas. The rationale for using this outdoor air pressure was presented in the preceding section. The approximate temperature of the exhaled air sample was estimated by a simple (although crude) expedient. An individual would closely blow on a thermometer, which was in the confining, approximately hemispheric volume of his/her cupped hand until the temperature indicated by the thermometer stopped rising. It should be noted that even if these measured temperatures are in error by as much as 6 °C, it would introduce an error of no more than about 2% of the nominal value of the calculated concentration of the exhaled CO₂. For the high concentrations of

Y. Yanes, C.J. Yapp/Applied Geochemistry 25 (2010) 1339-1349

Fig. 1. Sample sites on the SMU campus. Outdoor atmospheric CO₂ samples are represented by numbers from 1 to 6. Indoor atmospheric CO₂ samples are represented by letters as follows: A – Heroy Building; B – Fondren Science; C – Dedman Life Sciences; D – Dallas Hall; E – Perkins Administration Building; F – Dedman Center for Lifetime Sports; G – SMU mustang express (shuttle bus).

human-respired CO_2 measured for this work, the impact of this magnitude of uncertainty in the concentrations of a presumed endmember is not an impediment to the characterization of the mixing and isotopic mass balance of CO_2 in indoor air.

The fact that 10 s of continuous exhalation was sufficient to purge the u-tube of ambient air was established by collecting different samples of air exhaled by a single individual for either 2 s, 5 s, 10 s, or 15 s purge intervals over the course of a single day (Fig. 2A; Table 1, section A). There was no substantial change in the measured concentration of CO₂ between the 5 s and 10 s purge times (from 48,100 ppm to 49,200 ppm; Table 1, section A). Therefore, a 10 s purge seemed adequate to insure that a sample of exhaled air was not contaminated by residual ambient air in the utube. It should be mentioned that because the 10 s exhalation time implies a somewhat longer residence time in the lungs than under normal conditions, the exhaled CO₂ collected for this study could exhibit higher concentrations than in "normal" breath. A longer residence time might account for the further increase in CO₂ concentration associated with the 15 s exhalation time (Fig. 2A; Table 1, section A).

The possibility that variations in the measured concentrations of CO_2 exhaled by different individuals might be, at least in part,

a consequence of some unrecognized differences in the lengths of time for which breath was retained before exhalation into the u-tube was examined by collecting samples of air exhaled by a single individual. The concentration of exhaled CO_2 exhibits a progressive increase with increasing nominal retention times of ~1 s, 30 s, and 80 s (Table 1,section B; Fig. 2B), which mirrors the results of Epstein and Zeiri (1988) for consumption of O_2 during respiration.

During routine collection of exhaled air, individuals did not retain inhaled air for more than \sim 3 or 4 s before exhalation. Therefore, although variation in the concentrations of exhaled CO₂ among individuals may reflect some degree of differences in breath retention time, it is not thought to be a primary factor in the interpretation of the data of this study.

2.3. Generation of CO_2 from the ingredients in a cola beverage

A small volume (\sim 10 mL) of the liquid in a newly opened container of a commercial cola was dried in air at 22 °C followed by vacuum desiccation at room temperature. A portion of the viscous residue was weighed by difference using a fragment of pure silica glass ("quartz" glass) as the sample platform. The ensemble of

Fig. 2. Tests of exhaled CO_2 sampling strategy. (A) Individual #1 at rest conditions exhaled through the sampler for different times. (B) Individual # 9 delayed exhalation for different lengths of time before sampling.

quartz glass plus sample was combusted in a Vycor break-seal tube containing Cu oxide to yield CO₂ for isotopic analysis.

2.4. Stable isotope analysis

The C isotopic composition of CO_2 was measured on a dual-inlet Finnigan MAT 252 gas source isotope ratio mass spectrometer in the Huffington Department of Earth Sciences at SMU. All stable isotope results are reported in the usual δ notation:

$$\delta^{13}C = [({}^{13}R_{sample}/{}^{13}R_{standard}) - 1] \times 1000\%$$

where ${}^{13}R = {}^{13}C/{}^{12}C$, and the standard is Vienna-Pee Dee Belemnite (V-PDB). $\delta^{13}C$ values of samples were measured with respect to a laboratory working standard of tank CO₂ and were then corrected to the V-PDB standard (hereafter referred to as PDB). Overall analytical precision of the $\delta^{13}C$ measurements was ±0.1‰.

3. Results

Carbon dioxide extracted from air samples collected from various interior spaces around the SMU main campus (Fig. 1) exhibited δ^{13} C values ranging from -19.4% to -8.9% (Table 3; Fig. 3A). The concentration of this indoor CO₂ ranged from 386 ppm to 1980 ppm (Table 3; Fig. 3B). The highest CO₂ concentrations and lowest δ^{13} C values are generally associated with larger numbers of people in a particular interior space (Table 3).

 δ^{13} C values of outdoor atmospheric CO₂ samples collected at various sites around the SMU campus (Fig. 1) ranged from -10.1% to -8.4% (Table 4; Fig. 3C), with an average value of $-9.0 \pm 0.5\%$. Concentrations of outdoor atmospheric CO₂ ranged from 385 ppm to 447 ppm (Table 4; Fig. 3D), with an average value of 408 ± 15 ppm.

The δ^{13} C values of 41 CO₂ samples exhaled under rest conditions by 38 individuals from the SMU community ranged from -24.8% to -17.7% (Table 2; Fig. 3E), with a mean value of $-21.8 \pm 1.6\%$. The CO₂ concentration varied from 38,300 ppm to 69,500 ppm (Table 2; Fig. 3F), averaging 55,100 ± 6000 ppm. For the sample population, no significant gender or age-related differences were observed, and no samples of exhaled CO₂ were collected from individuals during times of vigorous physical activity. However, for a single individual, samples of exhaled CO₂ collected

Sample ID	Date	Local time (CDT)	Individual	T (°C)	Conditions	δ^{13} C‰ (PDB)	[CO ₂] (ppm)
(A) U-tube collec	tion times						
MPX-366	11/12/2009	8:50 AM (CST)	1	34.2	2 s. exhaling	-22.7	32,900
MPX-367	11/12/2009	9:30 AM (CST)	1	31.2	5 s exhaling	-22.7	48,100
MPX-368	11/12/2009	10:30 AM (CST)	1	29.9	10 s exhaling	-22.9	49,200
MPX-369	11/12/2009	11:20 AM (CST)	1	29.6	15 s exhaling	-23.3	62,800
(B) Breath retent	ion effect			Retention be	fore exhaling		
MPX-287	10/13/2009	2:55 PM (CDT)	9	34.6	<1 s	-22.6	50,200
MPX-311	10/4/2009	10:55 AM (CDT)	9	33.4	~30 s	-21.9	71,800
MPX-312	10/4/2009	12:00 PM (CDT)	9	34.0	~80 s	-22.5	78,900
(C) Consumption	of C ₄ sugar (cola beve	rage: $\delta^{13}C = -11.8\%$)					
MPX-334	10/23/2009	9:15 AM (CDT)	1	31.0	Before drinking	-23.0	57,000
MPX-335	10/23/2009	10:20 AM (CDT)	1	29.0	10 min after drinking	-21.0	62,900
MPX-336	10/23/2009	11:10 AM (CDT)	1	29.0	60 min after drinking	-17.7	55,200
MPX-337	10/23/2009	1:05 PM (CDT)	1	29.0	180 min after drinking	-20.1	60,700
(D) Variability fo	r a single individual						
MPX-288	9/24/2009	5:30 PM (CDT)	1	35.0	At rest	-21.3	64,900
MPX-293	9/28/2009	5:55 PM (CDT)	1	30.4	At rest	-21.2	76,200
MPX-294	9/28/2009	8:15 PM (CDT)	1	34.6	At rest	-20.8	76,000
MPX-297	9/30/2009	8:55 AM (CDT)	1	30.2	At rest	-22.0	60,700
MPX-305	10/2/2009	7:35 AM (CDT)	1	33.2	At rest	-22.9	58,400
MPX-334	10/23/2009	9:15 AM (CDT)	1	31.0	At rest	-23.0	57,000
MPX-358	10/29/2009	7:50 PM (CDT)	1	29.8	At rest	-22.2	55,100
MPX-368	11/12/2009	10:30 AM (CDT)	1	29.9	At rest	-22.9	49,200

T: temperature; CDT: Central Daylight Time; CST: Central Standard Time.

1342

Table 1

Variations of exhaled CO₂ for single individuals.

Fig. 3. Frequency distribution of the C isotopic composition (left column) and concentration (right column) of indoor CO₂ (A and B), outdoor CO₂ (C and D) and human breath CO₂ (E and F).

at various times over an interval of about 7 weeks during rest conditions had δ^{13} C values that ranged from -20.8% to -23.0% and CO₂ concentrations that ranged from 49,200 ppm to 76,200 ppm (Table 1, section D).

In addition, it was observed that the δ^{13} C values of CO₂ exhaled by a single individual after drinking a commercial cola that contained ~65 g of C₄ sugars (δ^{13} C = -11.8‰) increased from -23.0‰ before drinking to -17.7‰ 60 min after consuming the cola, with a subsequent decrease to -20.1‰ about 180 min after (Table 1, section C). No other foods or beverages had been consumed during the interval of 180 min. This apparently diet-induced, short-term variation in the δ^{13} C values (range = 5.3‰) of CO₂ exhaled by a single individual (Table 1, section C) is comparable to the range (7.1‰) of δ^{13} C values observed among CO₂ samples exhaled by 38 different individuals (Table 2).

4. Discussion

The SMU buildings in which air samples were collected are cooled or heated by piping in chilled water or steam. Consequently, CO₂ introduced into rooms by the ventilation system should arise from "outdoor" Dallas air. This condition suggests that the concentration and δ^{13} C values of outdoor air (Fig. 3C and D) can be considered likely endmembers in any CO₂ mixing processes that occurred in those interior spaces. The relatively small ranges of concentration and δ^{13} C values of outdoor CO₂ compared to indoor CO₂ (Fig. 3A–D) and the positions of the outdoor values at, or near, the low concentration end of the range of indoor values appear to support the validity of this endmember supposition.

4.1. Human-exhaled CO₂

The δ^{13} C of CO₂ in human breath seems to approximate the δ^{13} C values of the most recent food intake (e.g. Schoeller et al., 1980; Hedges et al., 2009). As noted, the δ^{13} C values measured for exhaled CO₂ in the current study range from -24.8% to -17.7%. This suggests varying proportions of foods representing ingredients ultimately derived, directly or indirectly, from C₃ or C₄ plants (e.g. O'Leary, 1988).

It is worth noting that the average δ^{13} C value (-21.8‰) of the exhaled CO₂ is comparable to the mode of about -22‰ seen in the frequency distribution for these data (Fig. 3E). If this distribution is representative of the SMU community, it suggests that even relatively small numbers of people in a room might be expected to exhale CO₂ with an average δ^{13} C value near -21.8‰. If so, CO₂ in the air of the indoor environments on the SMU campus (in which

Table 2

1344

Concentration and δ^{13} C values of CO₂ exhaled by individuals.

Sample ID	Date	Local time ^a	Individual	T (°C)	δ^{13} C‰ (PDB)	[CO ₂] (ppm)
MPX-288	9/24/09	5:30 PM	1	35.0	-21.3	64,900
MPX-291	9/28/09	3:10 PM	2	32.0	-21.0	54,200
MPX-292	9/28/09	4:30 PM	3	29.0	-20.5	47,400
MPX-296	9/29/09	4:00 PM	5	30.0	-23.5	38,300
MPX-295	9/29/09	2:40 PM	4	29.0	-22.7	50,400
MPX-301	9/30/09	5:00 PM	6	29.0	-23.8	51,100
MPX-304	10/1/09	3:35 PM	7	32.6	-20.8	55,700
MPX-309	10/2/09	2:35 PM	8	34.0	-22.1	61,400
MPX-310	10/2/09	4:25 PM	2	28.0	-24.8	51,700
MPX-313	10/5/09	5:20 PM	10	30.2	-19.0	54,900
MPX-315	10/7/09	5:25 PM	12	32.0	-20.0	52,900
MPX-314	10/7/09	3:40 PM	11	27.0	-22.5	53,500
MPX-318	10/8/09	3:30 PM	13	33.0	-20.5	52,200
MPX-319	10/8/09	4:45 PM	14	32.2	-20.0	58,600
MPX-324	10/12/09	2:05 PM	16	35.0	-22.8	56,400
MPX-323	10/12/09	12:25 PM	15	32.2	-19.4	55,300
MPX-326	10/13/09	2:55 PM	9	34.6	-22.6	50,200
MPX-327	10/14/09	9:40 AM	17	27.6	-17.7	59,900
MPX-328	10/15/09	3:10 PM	18	31.6	-23.7	58,900
MPX-329	10/15/09	4:35 PM	19	33.9	-22.1	60,900
MPX-330	10/22/09	11:00 AM	20	31.0	-21.7	52,900
MPX-331	10/22/09	12:20 PM	21	31.0	-23.9	55,900
MPX-332	10/22/09	3:15 PM	22	30.6	-22.2	59,100
MPX-333	10/22/09	5:15 PM	23	29.0	-22.8	59,600
MPX-340	10/23/09	4:40 PM	25	28.2	-23.1	51,100
MPX-339	10/23/09	3:34 PM	24	34.2	-22.0	52,300
MPX-341	10/23/09	5:40 PM	26	31.2	-19.6	57,900
MPX-344	10/24/09	1:45 PM	27	30.0	-22.2	53,500
MPX-348	10/26/09	4:20 PM	29	30.8	-22.6	54,800
MPX-347	10/26/09	12:55 PM	28	33.2	-21.1	46,600
MPX-353	10/27/09	1:40 PM	31	28.2	-23.1	61,200
MPX-350	10/27/09	10:25 AM	17	25.0	-18.1	69,500
MPX-349	10/27/09	8:55 AM	30	32.4	-22.0	57,100
MPX-354	10/28/09	5:40 PM	32	32.8	-22.3	56,900
MPX-358	10/29/09	7:50 PM	1	29.8	-22.2	55,100
MPX-355	10/29/09	9:19 AM	33	31.0	-22.4	57,400
MPX-356	10/29/09	11:05 AM	34	33.0	-22.2	47,900
MPX-357	10/29/09	3:30 PM	35	32.6	-21.5	69,500
MPX-359	10/30/09	3:45 PM	36	28.8	-21.5	56,000
MPX-362	11/2/09	5:10 PM	37	31.8	-22.3	44,800
MPX-365	11/5/09	2:40 PM	38	29.0	-23.1	51,600

^a All local times for days prior to November 1, 2009 are Central Daylight Time (CDT).

humans are expected to be the dominant *in situ* source of CO₂) could be considered to be a mixture of outdoor CO₂ (average $\delta^{13}C = -9.0\%$) supplied by the ventilation systems and CO₂ exhaled by people (average $\delta^{13}C = -21.8\%$) occupying the rooms.

Although, compared to the ambient indoor and outdoor CO₂ samples (Fig. 3B and D), there is a relatively large range in the absolute concentrations (as ppm) of human-exhaled CO₂ (Fig. 3F), the highest exhaled CO₂ concentration is only about a factor of 2 larger than the lowest exhaled value. This factor of two contrasts with the ratio of \sim 100-200 for the concentration of exhaled CO₂ relative to outdoor CO₂. Thus, the variations in concentrations of exhaled CO₂ are expected to have no significant effect on the mass balance of the indoor CO₂ mixture. Moreover, the distribution of the concentrations of exhaled CO₂ has a mode at 56,000 ppm (Fig. 3F), which is about the same as the average value (55,100 ppm). Consequently, even a relatively small number of people might exhale CO₂ with an average concentration near 55,000 ppm. The preceding discussion implies that mixing of CO_2 in indoor air on the SMU campus can be reasonably characterized with a simple two-endmember mixing model involving the measured concentrations and δ^{13} C values of the indoor CO₂.

4.2. Two-endmember mixing of indoor atmospheric CO₂

The assumption that CO_2 from outdoor Dallas air and CO_2 exhaled by the human occupants of the interior spaces of interest

on the SMU campus are the only significant contributors to the ambient indoor CO_2 leads to the following mass balance equation:

$$\delta^{13}C_{\rm m} = \left[\left(\delta^{13}C_{\rm OD} - \delta^{13}C_{\rm X} \right) \left(\frac{C_{\rm OD}}{10^4} \right) \right] \left[\frac{10^4}{C_{\rm m}} \right] + \delta^{13}C_{\rm X} \tag{1}$$

where, $\delta^{13}C_m$ = the measured $\delta^{13}C$ value of the indoor atmospheric CO₂ sample, $\delta^{13}C_{OD}$ = the $\delta^{13}C$ value of the outdoor atmospheric CO₂ sample, $\delta^{13}C_X$ = the $\delta^{13}C$ value of the human-exhaled CO₂, C_m = concentration (in ppm) of the measured indoor atmospheric CO₂. C_{OD} = concentration (in ppm) of the outdoor atmospheric CO₂. If $\delta^{13}C_{OD}$, $\delta^{13}C_X$, and C_{OD} are constant, Eq. (1) predicts that $\delta^{13}C_m$ will be a linear function of the reciprocal of the CO₂ concentration ($10^4/C_m$). The intercept of Eq. (1) would correspond to the $\delta^{13}C$ value of the human-exhaled CO₂. Values of $\delta^{13}C$ for indoor CO₂ from Table 3 are plotted against the corresponding reciprocal of the concentration in Fig. 4A. Linear regression of the data of Fig. 4A yields the following equation:

$$\delta^{13}C_{\rm m} = 0.51(\pm 0.01)[10^4/C_{\rm m}] - 21.8(\pm 0.1) \tag{2}$$

With $r^2 = 0.99$, and p < 0.001 (n = 78). This high degree of linearity characterizes samples from a variety of indoor locations with differing numbers of people (Table 3). This linearity plus the fact that the intercept of $-21.8(\pm 0.1)\%$ in Eq. (2) is the same as the average value of -21.8% determined for the CO₂ exhaled by 38 different individuals implies that the air in the sampled interior

Table 3Concentration and $\delta^{13}C$ values of indoor atmospheric CO2 at locations on the SMU main campus.

Sample ID	Date	Local time ^a	Site	Sampled area	Room location	Time (min) ^b	# of people	T (°C)	RH (%)	Pressure (mb) ^c	δ ¹³ C‰ (PDB)	CO ₂ (PPM)
MPX-270	9/12/2009	8:10 AM	А	2nd floor hall			1	22.2	55	1012.1	-13.1	556
MPX-275	9/16/2009	2:20 PM	А	2nd floor hall			4	23.2	56	1011.0	-11.0	481
MPX-209	7/30/2009	11:55 AM	Α	4st floor hall			1	23.1	53	1012.5	-9.8	412
MPX-208	7/30/2009	11:45 AM	Α	Basement hall			3	22.0	56	1012.5	-10.0	431
MPX-364	11/2/2009	5:25 PM	А	Elevator with doors			5	24.0	73	1021.6	-16.5	1030
				closed			_					
MPX-363	11/2/2009	5:15 PM	A	Elevator with doors open			5	24.0	73	1021.6	-15.7	842
MPX-321	10/9/2009	6:15 PM	A	Lab 338	Back		2	21.4	72	1017.8	-10.9	458
MPX-217	8/5/2009	9:55 AM	A	Room 153	Back		1	22.8	55	1015.9	-9.8	433
MPX-218	8/5/2009	10:05 AM	A	Room 153	Front		1	22.5	55	1015.9	-10.3	386
MPX-225	8/10/2009	6:00 AM	A	Room 153	Back		1	22.2	51	1014.0	-9.3	416
MPX-226	8/10/2009	6: IU AM	A	Room 153	Front	45	1	22.4	51	1014.0	-9.4	420
MPX-208	9/11/2009	12:45 PM	A	Room 152	BdCK	45	70	23.9	62	1015.2	-18.0	1310
MPX_278	9/18/2009	12:47 I M	Δ	Room 153	Front	35	55	23.5	65	1015.2	-17.6	1160
MPX_279	9/18/2009	12:35 FM	Δ	Room 153	Back	45	55	23.2	65	1015.4	-17.6	1160
MPX-273	8/7/2009	2.35 PM	B	3rd floor hall	Duck	45	3	25.0	53	1013.4	-10.3	443
MPX-281	9/21/2009	10.15 AM	B	3rd floor hall			7	23.1	58	1011.6	-14.0	655
MPX-221	8/7/2009	2.20 PM	B	Basement hall			5	23.8	52	1014.0	-97	413
MPX-280	9/21/2009	10:05 AM	В	Basement hall			4	23.0	55	1011.6	-11.9	511
MPX-227	8/17/2009	9:30 AM	В	Room 130	Front		1	22.1	44	1015.1	-9.7	420
MPX-228	8/17/2009	9:40 AM	В	Room 130	Back		1	22.1	44	1015.1	-9.8	429
MPX-242	8/26/2009	11:50 AM	В	Room 130	Back		9	23.8	45	1014.6	-17.6	1200
MPX-243	8/26/2009	11:50 AM	В	Room 130	Back		9	23.8	45	1014.6	-17.8	1260
MPX-249	8/31/2009	12:00 PM	В	Room 130	Front	60	7	24.0	45	1021.3	-18.2	1210
MPX-250	8/31/2009	12:10 PM	В	Room 130	Back	70	7	23.9	45	1021.3	-17.4	1060
MPX-253	9/2/2009	11:00 AM	В	Room 130	Front		9	24.6	51	1019.1	-18.4	1320
MPX-254	9/2/2009	12:15 PM	В	Room 130	Front	75	9	24.4	44	1018.6	-17.6	1140
MPX-264	9/9/2009	12:00 PM	В	Room 130	Front	60	6	25.0	52	1014.5	-18.6	1570
MPX-265	9/9/2009	12:10 PM	В	Room 130	Back	70	10	24.8	44	1014.5	-18.3	1380
MPX-271	9/14/2009	10:55 AM	В	Room 130	Back	60	24	22.6	62	1010.5	-18.6	1560
MPX-272	9/14/2009	12:05 PM	В	Room 130	Back	65	9	22.0	57	1010.7	-17.6	1220
MPX-201	7/23/2009	5:00 PM	В	Room 133	Front		2	22.0	54	1013.9	-12.8	620
MPX-202	7/23/2009	9:10 PM	В	Room 133	Front		1	22.1	63	1014.3	-10.7	480
MPX-205	7/27/2009	8:30 PM	В	Room 133	Front		1	21.0	71	1011.8	-10.1	428
MPX-229	8/18/2009	9:45 AM	В	Room 133	Front		1	22.8	67	1016.4	-9.8	428
MPX-230	8/18/2009	9:55 AM	В	Room 133	Back		1	23.0	67	1016.4	-10.1	440
MPX-255	9/3/2009	10:55 AM	В	Room 133	Back	60	20	23.5	59	1014.6	-16.7	971
MPX-256	9/3/2009	12:00 PM	В	Room 133	Back	60	67	23.0	57	1014.6	-17.0	1110
MPX-262	9/8/2009	12:00 PM	Б D	Room 122	FIOIIL	60	64	24.5	5/ E0	1013.7	-17.0	1110
MDV 251	9/8/2009	12.03 PM	D	Room 122	Dack	10	120	23.0	20 72	1015.7	-17.1	1070
WIFX-551	2009	12.40 FW	Б	KOOIII 155	Dack	10	120	22.9	/5	1011.1	-10.7	1070
MPX-352	10/27/	1:20 PM	В	Room 133	Back	40	120	22.5	73	1011.1	-16.7	1170
	2009	= 00 PM		D 450	F .			24.2	60	1007 5	10.0	100
MPX-206	7/28/2009	7:28 PM	В	Room 153	Front		2	21.3	62	1007.5	-10.0	439
MDV 221	8/10/2009	7.20 PIVI	D	Room 152	FIOIIL		2	21.5	02 57	1007.5	-10.1	455
MDY_222	8/19/2009	9.35 AM	B	Room 153	Back		1	22.0	57	1012.4	-9.5	411
MPX_244	8/27/2009	9.10 AM	B	Room 153	Back		23	22.2	53	1012.4	- <u>J.4</u> _15.2	782
MPX-251	9/1/2009	9:00 AM	B	Room 153	Front	60	25	21.6	52	10217	-14.3	669
MPX-252	9/1/2009	9:10 AM	В	Room 153	Back	70	25	23.0	51	1021.7	-15.2	744
MPX-266	9/10/2009	9:05 AM	В	Room 153	Front	65	23	21.9	57	1015.2	-14.7	683
MPX-267	9/10/2009	9:10 AM	В	Room 153	Back	70	23	23.0	56	1015.2	-15.3	752
MPX-215	8/4/2009	9:40 AM	С	1st floor hall			2	24.4	49	1015.3	-10.6	447
MPX-216	8/4/2009	9:55 AM	С	3rd floor hall			5	23.8	43	1015.3	-11.2	484
MPX-211	8/1/2009	9:05 AM	С	Rm 131	Front		1	21.6	49	1014.7	-10.0	435
MPX-212	8/1/2009	9:15 AM	С	Rm 131	Back		1	21.2	49	1014.7	-12.9	545
MPX-233	8/20/2009	9:05 AM	С	Rm 131	Front		1	22.9	47	1010.3	-8.9	401
MPX-234	8/20/2009	9:15 AM	С	Rm 131	Back		1	22.8	47	1010.3	-10.0	439
MPX-245	8/28/2009	9:35 AM	С	Rm 131	Front		43	23.2	51	1014.8	-16.5	950
MPX-246	8/28/2009	9:40 AM	С	Rm 131	Back		43	23.4	49	1014.8	-16.2	895
MPX-257	9/4/2009	9:40 AM	С	Rm 131	Front	40	40	23.4	51	1015.8	-17.6	1090
MPX-258	9/4/2009	9:45 AM	C	Rm 131	Back	40	40	23.5	50	1015.8	-16.4	917
MPX-213	8/3/2009	9:25 AM	D	Ist floor hall			8	23.8	49	1014.7	-11.6	487
MPX-247	8/28/2009	1:55 DM	D	1st floor hall			3	22.8	52	1012.0	-12.4	549
MDV 214	9/15/2009	1:55 PIVI	D	and floor ball			20	23.0	52 47	1012.4	-17.2	1140
MDV 249	8/28/2009	5.40 AW	D	3rd floor ball			1	23.5	47	1013.4	-11.0	499
MDV 274	0/20/2009	2:05 DM	D	3rd floor hall			1	23.0	47 52	1012.0	-12.4	1080
MPX_276	9/17/2009	2.05 PW 10.40 AM	F	1st floor hall			5	23.5	52	1012.4	-13.5	615
MPX-289	9/28/2009	10:00 AM	Ē	1st floor hall			15	22.2	72	1017.5	-12.3	543
MPX-277	9/17/2009	10:45 AM	Ē	3rd floor hall			4	23.0	51	1011.6	-13.6	627
	, ,====											

1345

(continued on next page)

Table 3 (continued)

Sample ID	Date	Local time ^a	Site	Sampled area	Room location	Time (min) ^b	# of people	T (°C)	RH (%)	Pressure (mb) ^c	δ ¹³ C‰ (PDB)	CO ₂ (PPM)
MPX-290	9/28/2009	10:10 AM	Е	3rd floor hall			10	22.4	73	1017.5	-12.0	547
MPX-282	9/21/2009	7:00 PM	F	Tread mill area			80	23.8	50	1007.8	-15.5	837
MPX-285	9/23/2009	3:45 PM	F	Tread mill area			55	22.8	73	1021.5	-13.9	658
MPX-286	9/23/2009	3:50 PM	F	Tread mill area			55	22.2	73	1021.5	-14.5	696
MPX-302	10/1/2009	9:45 AM	G	Shuttle bus			7	21.2	70	1009.1	-14.8	704
MPX-303	10/1/2009	10:15 AM	G	Shuttle bus			12	18.6	66	1009.1	-17.0	1100
MPX-316	10/8/2009	10:35 AM	G	Shuttle bus			3	17.8	67	1010.6	-13.4	601
MPX-317	10/8/2009	10:55 AM	G	Shuttle bus			32	19.2	66	1010.6	-19.4	1980

T: temperature; RH: relative humidity; # number.

^a All local times for days prior to November 1, 2009 are Central Daylight Time (CDT).

^b Time elapsed since the start of class (in minutes).

^c Total pressure (sea level corrected) data from NWS station at Love-Field Airport.

spaces was reasonably well-mixed and that the average δ^{13} C value of the CO₂ exhaled by those 38 individuals was representative of the larger SMU community. Note also that the outdoor CO₂ samples scatter tightly at one end of the indoor CO₂ data array in Fig. 4A, which is also consistent with the model assumption that outdoor air is one of the two end members of the mixed air found indoors.

The agreement of the average δ^{13} C value of the exhaled CO₂ with the value predicted by the intercept of Eq. (2) not only emphasizes the validity of the two-endmember mixing model represented by Eq. (1), but also the dominant role of human-respired CO₂ in producing variations in the abundance and isotopic composition of CO₂ in the interior spaces of this study. Although this sort of "Keeling mixing curve" behavior is not unexpected, the data array in Fig. 4A demonstrates its simple realization in these indoor spaces. Furthermore, for any interior space that satisfies the assumptions put forward here, the simple binary mixing model implies that concentrations and δ^{13} C values of CO₂ in a pair of samples of indoor and outdoor air might be used in combination to obtain a relatively rapid and credible estimate of the average δ^{13} C value of CO₂ exhaled by people occupying a room, thereby providing information about the role of C₃ and C₄-type foods in the average diet of that local population. For any of the various groups occupying the sampled SMU rooms of this study, a simple mass balance calculation (for a C₄ endmember δ^{13} C value of -13% and a C₃ endmember value of -27‰, e.g. O'Leary, 1988) suggests that C₄-derived C was \sim 40% of the average diet.

A possible example of the use of a binary mixing model for ambient CO₂ in another indoor venue is represented by some of the data of Widory and Javoy (2003). These authors analyzed concentrations and δ^{13} C values of samples from five indoor sites on the Jussieu campus of the Université de Paris, France (i.e., one classroom and four laboratories). Widory and Javoy (2003) noted that their laboratory air probably included CO_2 contributed by $\mathrm{CH}_4\text{-}$ burning torches used for routine glass blowing in the laboratories. However, the reported concentrations and δ^{13} C values of laboratory CO₂ do not differ greatly from those of their "open country" samples. Therefore, the four laboratory data points plus the single classroom point of Widory and Javoy (2003) are plotted in Fig. 4B. Although the distribution of the data of Widory and Javoy (2003) is not substantively different from an array containing only two points, a linear regression of those data is represented by the line and corresponding equation in Fig. 4B. The intercept of that bestfit line has a value of -25.8%. If this intercept value is indicative of the average δ^{13} C value of CO₂ exhaled by the people in those Paris rooms, it indicates a lower proportion (\sim 10%) of C₄-derived C in their diet than the proportion (\sim 40%) in the diet of the people in the SMU community in Dallas. These types of dietary differences between Europeans and Americans were observed previously by

direct measurements of δ^{13} C values of CO₂ in human breath (e.g. Schoeller et al., 1980).

4.3. Steady state and time scales for mixing of SMU indoor air

Data on the maximum fluxes of air provided by the ventilation systems to certain rooms on the SMU campus were obtained from the SMU Office of Planning, Design, and Construction. Those volumes and ventilation rates are listed in Table 5. Since the air pressure in the rooms does not vary dramatically, it is assumed that input and output fluxes of air via the ventilation systems are equal and that the volumes (amounts) of air in the rooms can be considered to be at steady state and equal to the measured volumes of the rooms themselves. This assumption allows calculations of residence times for the air in some of the rooms sampled in this study. Residence time is defined as follows:

$$\tau = \frac{V_{\rm rm}}{f_{\rm in}} \tag{3}$$

where τ = residence time (min); $V_{\rm rm}$ = volume (m³) of air in the room; $f_{\rm in}$ = flux (m³/min) of air into the room. The calculated residence times for the rooms for which data are available are listed in Table 5 and range from ~2.0 to 10.2 min. These relatively short residence times suggest that CO₂ extracted from air samples collected about 30–60 min after the beginning of a class session should represent a close approximation to steady-state conditions, if the number of people in the room remained relatively constant and the doors to the room were closed. This can be formally expressed by the following flux balance equation for the CO₂:

$$\frac{dn_{\rm rm}}{dt} = F_{\rm in} + F_{\rm x} - F_{\rm out} \tag{4}$$

t = time (min). $n_{rm} = moles of CO_2 in the room air. F_{in} = flux (moles/$ min) of CO₂ introduced into the room by the ventilation system. $F_{\rm X}$ = the flux (moles/min) of exhaled CO₂ introduced into the room air by the human occupants. F_{out} = flux (moles/min) of CO₂ that leaves the room via the ventilation system. It is assumed that no other fluxes are of significance to the CO2 mass balance in these systems. $F_{in} = C_{in} f_{in}$ Where, $C_{in} = \text{concentration of } CO_2 \text{ (moles/m³) in}$ the input ventilation air. f_{in} is as defined for Eq. (3). F_{out} = flux (moles/min) of CO2 out of the room via the ventilation system. $F_{out} = C_{rm} f_{out}$ and $C_{rm} = \text{concentration of } CO_2 \text{ (moles/m³) in the room}$ air at some time t. Also, the assumption of steady state requires that $f_{out} = f_{in}$ (see discussion before Eq. (3)). Finally, it is assumed that $F_x = kN_x$ where "k" (mole/min/person) is a proportionality constant (the average individual respiration rate of the occupants in a room) and N_x = the number of people in a room during the time of interest. The average value of "k" is an unknown for the current study. With the preceding terms, Eq. (4) can be rewritten as:

1346

 Table 4

 Outdoor atmospheric CO₂ concentration and δ^{13} C values on the SMU main campus.

Sample ID	Date	Local time ^a	Location	T (°C)	RH (%)	Pressure (mb) ^{bc}	Wind speed & direction $(mnh)^c$	$\delta^{13}C\%$ (PDB)	CO _n (PPM)
Sample ib	Date	Local time	Location	I (C)	KII (70)	Tressure (IIID)	while speed & direction (inpit)	0 C/00 (1DD)	CO ₂ (11 W)
MPX-204	7/27/2009	8:30 PM	2	24.2	91	1011.8	NE at 6	-9.5	429
MPX-210	7/31/2009	1:30 PM	2	29.8	58	1017.2	E at 8	-8.4	387
MPX-219	8/6/2009	9:15 AM	1	28.0	86	1016.0	SE at 10	-10.1	447
MPX-220	8/6/2009	9:30 AM	5	30.0	71	1016.3	SE at 8	-9.7	415
MPX-223	8/8/2009	2:30 PM	3	34.0	49	1014.5	S at 18 G25	-8.4	395
MPX-224	8/8/2009	2:20 PM	2	34.2	51	1014.5	S at 18 G25	-8.4	385
MPX-235	8/21/2009	9:55 AM	4	23.8	80	1016.0	N at 6	-9.2	404
MPX-236	8/21/2009	10:05 AM	2	24.4	84	1016.0	N at 6	-9.0	404
MPX-237	8/22/2009	10:05 AM	1	27.8	65	1017.2	N at 6	-9.5	419
MPX-238	8/22/2009	10:20 AM	5	30.0	56	1017.2	N at 6	-9.3	412
MPX-239	8/24/2009	9:00 AM	2	26.5	77	1015.5	SE at 14	-9.6	392
MPX-240	8/24/2009	9:10 AM	2	26.3	79	1015.5	SE at 14	-9.5	413
MPX-241	8/25/2009	1:20 PM	4	34.4	54	1014.6	SW at 6	-8.9	414
MPX-259	9/5/2009	8:55 AM	7	23.2	88	1017.0	S at 6	-10.0	436
MPX-261	9/5/2009	7:05 PM	7	30.4	54	1014.3	E at 3	-9.0	407
MPX-283	9/22/2009	3:00 PM	4	19.8	70	1018.0	N at 12	-8.5	411
MPX-284	9/22/2009	3:05 PM	1	18.8	66	1018.0	N at 12	-8.5	391
MPX-338	10/23/2009	3:25 PM	6	21.4	77	1013.0	NW at 15 G 22	-8.6	412
MPX-342	10/24/2009	2:25 PM	6	22.8	73	1012.4	S at 12 G 22	-8.6	403
MPX-343	10/24/2009	2:25 PM	6	22.8	73	1012.4	S at 12 G 22	-8.6	401
MPX-345	10/25/2009	3:20 PM	6	25.5	77	1009.3	S at 14 G 22	-8.7	399
MPX-346	10/25/2009	3:20 PM	6	25.5	77	1009.3	S at 14 G 22	-8.7	408

T: temperature; RH: relative humidity.

^a All local times for days prior to November 1, 2009 are Central Daylight Time (CDT).

^b Total pressure (sea level corrected).

^c Weather variables collected from NWS station at Love-Field Airport.

$$\frac{dC_{\rm rm}}{dt} = \left(C_{\rm in}\frac{f_{\rm in}}{V_{\rm rm}} + \frac{kN_{\rm x}}{V_{\rm rm}}\right) - \left(\frac{f_{\rm in}}{V_{\rm rm}}\right)C_{\rm rm}$$
(5)

Eq. (5) derives from the fact that $C_{\rm rm} = n_{\rm rm}/V_{\rm rm}$. For constant $C_{\rm in}$, $f_{\rm in}$, $V_{\rm rm}$, k, and $N_{\rm x}$ in any particular interior space for some time of interest, Eq. (5) can be integrated to yield:

$$C_{\rm rm} = \left[C_{\rm in} + \frac{kN_{\rm x}}{f_{\rm in}}\right] - \left[\left(C_{\rm in} + \frac{kN_{\rm x}}{f_{\rm in}}\right) - C_{\rm rm_0}\right]e^{-\left(\frac{f_{\rm in}}{V_{\rm rm}}\right)t}$$
(6)

 $C_{\rm rm0}$ = the concentration of CO₂ in a room when t = 0. For ambient air residence times of ~10 min, Eq. (6) suggests that ~30 min after t = 0 the CO₂ system should exhibit an approximately 95% approach to steady state. This implies that the assumption of steady state may be reasonable for many of the samples. From Eq. (6), the equation for the steady state concentration of CO₂ is:

$$C_{\rm rm_{SS}} = \left[C_{\rm in} + \frac{kN_{\rm x}}{f_{\rm in}}\right] \tag{7}$$

If $f_{\rm in}$ for a particular room is constant, Eq. (7) predicts that $C_{\rm rm}$ should be a linear function of $N_{\rm x}$. Plots of $C_{\rm rm}$ against $N_{\rm x}$ are shown in Fig. 5 for three interior spaces in which the number of people was different enough at various sampling opportunities to constitute a useful test of Eq. (7). For all three spaces, $C_{\rm rm}$ increases with increasing $N_{\rm x}$. However, of the three interior spaces in Fig. 5, only the data from the SMU shuttle bus (Fig. 5C) exhibit an apparently linear relationship between the concentration of CO₂ and the number of people in that space.

The absence of linearity in the data (Fig. 5A and B) for rooms 130 and 133 in the Fondren Science building could indicate that steady state was not uniformly achieved and/or that f_{in} was not constant in those rooms. This latter possibility is supported by information from the SMU Office of Planning, Design, and Construction that the ventilation in Fondren Science is variable flow in response to thermal demands placed on the rooms by the occupancy. Therefore, once some number of people (N_x) has been established in such a room, f_{in} should settle on some value related to N_x . Thus, in view of the previous discussion about the maintenance of the very small constant pressure difference between room air and outdoor air, if f_{in} is some function of N_x . Eq. (7) (a steady state equa-

Fig. 4. (A) Carbon isotopic composition of SMU indoor air CO_2 samples (white circles), outdoor atmospheric CO_2 samples (gray circles) and human-respired CO_2 samples (black circles) plotted against the reciprocal of the atmospheric CO_2 concentration (ppm). The solid line represents the linear regression of the SMU indoor data of this study. (B) Data for indoor CO_2 of the Jussieu campus, Université de Paris, France, measured by Widory and Javoy (2003). The dashed line and associated equation represent the linear regression of the data of Widory and Javoy (2003). The SMU mixing line (solid line) and equation from 4A are also shown in 4B for comparison.

1348

Y. Yanes, C.J. Yapp/Applied Geochemistry 25 (2010) 1339-1349

 Table 5

 Volumes and ventilation rates for some rooms on the SMU campus, Dallas, Texas, USA.

Building	Building ID	Room number	Volume (m ³)	Ventilation rate (m ³ /min)	Residence time (min)
Heroy Dedman	A C	153 131	298.5 468.9	151.2 60.0	2.0 7.8
Life Sciences					
Fondren Science	В	130	288.8	28.3	10.2
Fondren Science	В	133	944.6	141.6	6.7
Fondren Science	В	153	322.2	31.4	10.2

tion) implies that even a nonlinear data array (such as those in Fig. 5A and B) could represent a locus of steady-state conditions. However, if it should happen that steady-state conditions were not attained in all instances, the highly coherent data array of Fig. 4A would not be affected. Furthermore, the results in Figs. 4A and 5A–C, taken together, support an assumption that the mixing processes in all of the interior spaces of this study were generally efficient.

Fig. 5. Concentration (mol/m³) [of indoor atmospheric CO₂ in classrooms (A and B) and of CO₂ in the air inside the passenger compartment of a shuttle bus (C)] plotted against number of people (N_x). See text.

Fig. 6. δ^{13} C values of the respired CO₂ plotted against the reciprocal of the CO₂ concentration for a single individual at different times under rest conditions.

4.4. Concentration and $\delta^{13}\text{C}$ values of single-source human-exhaled CO_2

An apparent relationship between the δ^{13} C of CO₂ and the reciprocal of concentration (ppm) was observed for a suite of CO₂ samples exhaled by a single individual (Fig. 6) under rest conditions over an interval of 7 weeks (Table 1, section D). A linear regression of the data of Fig. 6 is represented by the line in the Figure for which $r^2 = 0.75$ and p = 0.002 (n = 8). At present, the authors have no explanation for the apparent linearity of the relationship, but it is suggestive of some type of mixing process. The results are presented here to call attention to the observation. The generality of this observation remains to be investigated.

4.5. Outdoor urban atmospheric CO₂

Clark-Thorne and Yapp (2003) analyzed the isotopic composition of outdoor atmospheric CO₂ that was collected about 10 a ago in the Dallas metropolitan area and evaluated the impact of fossil fuel combustion on the urban atmospheric CO₂ budget. δ^{13} C values of their CO₂ samples are plotted against the reciprocal of the CO₂ concentration in Fig. 7 (restricted to the outdoor samples collected on the SMU campus). Fig. 7 also contains outdoor CO₂ data obtained in the current work (Table 4). At present, the average concentration of outdoor CO₂ on the SMU campus is ~17 ppm higher than the average concentration measured 10 a ago. In contrast, the average δ^{13} C values of the two data sets

Fig. 7. Carbon isotopic composition of the outdoor atmospheric CO_2 on the SMU campus plotted against the reciprocal of the CO_2 concentration for the 1999 and 2009 data sets. Also, included are the corresponding global "background" CO_2 data. See text.

are essentially unchanged at $\sim -9\%$. This local increase in the concentration of urban atmospheric CO₂ is comparable to the increase of \sim 18 ppm in the concentration of global atmospheric CO₂ observed at Mauna Loa Observatory over the last 10 a. The Mauna Loa data are represented by diamond symbols in Fig. 7 (NOAA: http://www.esrl.noaa.gov/gmd/ccgg/trends/co2_data_mlo.html). The intercepts of the regression lines for the SMU data sets in Fig. 7 differ by 1.3% (-21.6% for the 1999 data and -20.3% for the 2009 data), which reflects the increase in the average concentration of CO₂ with no significant change in the average δ^{13} C value.

This magnitude of change in the concentration of the Dallas area atmospheric CO₂ over a 10 a interval compares to a 25-a increase of about 30 ppm observed on the Caltech campus in Pasadena, California by Newman et al. (2008). The increase of \sim 30 ppm in the Pasadena, California, CO₂ concentration was set against a global increase of 47 ppm during that interval. Newman et al. (2008) also found that there was no substantial change in the δ^{13} C values of the ambient urban CO₂.

5. Conclusions

The outdoor urban atmospheric CO2 samples analyzed for this Dallas study exhibit an average increase in concentration of \sim 17 ppm relative to samples measured in a study of Dallas CO₂ performed 10 a ago. At both times, the average concentration of CO₂ in the Dallas atmosphere was higher than the concurrent global averages. This observation, plus the fact that the temporal increase in the urban CO₂ concentration mimicked the global increase in concentrations of atmospheric CO₂ reported over the same interval, emphasizes the role of urban fossil fuel combustion as a source term in the global atmospheric CO₂ budget.

Carbon dioxide exhaled by human beings is clearly manifested in the isotopic mass balance of CO₂ in the air of interior spaces. The simple binary mixing model that describes this mass balance suggests that samples of indoor air can be used to deduce the average isotopic characteristics of food in the diets of people that occupy an interior space for times on the order of 30 min. Thus, interior spaces may serve as effective "sample vessels" for rapidly assessing differences in the average diets (C₃ vs. C₄ contributions) of large numbers of people at various times and places using measurements of CO₂ in the ambient air.

Acknowledgements

This research was partially supported by the Huffington Department of Earth Sciences at SMU. Special thanks go to the Ministry of Science and Innovation (MICCIN) of the Spanish Government for support of Y.Yanes as a postdoctoral researcher at SMU. We thank Kurt Ferguson and Stephanie Thomas (SMU) for assistance with isotopic analyses; Larry Helpert of the SMU Office of Planning, Design, and Construction and Rocky Nana of the SMU Office of Facilities, Management, and Sustainability for important information about the building ventilation systems; and all those in the SMU

community who exhaled CO₂. We also extend our appreciation to two anonymous reviewers for their comments.

References

- Affek, H.P., Eiler, J.M., 2006. Abundance of mass ⁴⁷CO₂ in urban air, car exhaust, and human breath. Geochim. Cosmochim. Acta 70, 1–12.
- Carmi, I., Haklay, R., Rozalis, S., Kronfeld, J., 2005. The concentration and δ^{13} C of CO₂ in the urban atmosphere of Tel-Aviv. Geochronometria 24, 59-61.
- Clark-Thorne, S.T., Yapp, C.J., 2003. Stable carbon isotope constraints on mixing and mass balance of CO2 in an urban atmosphere: Dallas metropolitan area, Texas, USA. Appl. Geochem. 18, 75-95.
- Daisey, J.M., Angell, W.J., Apte, M.G., 2003. Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air 13, 53-64. Epstein, S., Zeiri, L., 1988. Oxygen and carbon isotopic compositions of gases
- respired by humans. Proc. Natl. Acad. Sci. 85, 1727-1731
- Friedli, H., Lotsccher, H., Oeschger, H., Siegenthaler, U., Stauffer, B., 1989. Ice core record of the ¹³C/¹²C ratio of atmospheric CO₂ in the past two centuries. Nature 324, 237-238.
- Fromme, H., Twardella, D., Dietrich, S., Heitmann, D., Schierl, R., Liebld, R., Rüden, H., 2007. Particulate matter in the indoor air of classrooms-exploratory results from Munich and surrounding area. Atmos. Environ. 41, 854-866.
- Hedges, R., Rush, E., Aalbersberg, W., 2009. Correspondence between human diet, body composition and stable isotopic composition of hair and breath in Fijian villagers. Isot. Environ. Health Stud. 45, 1-17.
- Hofmann, D.J., Butler, J.H., Dlugokencky, E.J., Elkins, J.W., Masarie, K., Montzka, S.A., Tans, P., 2006. The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the annual greenhouse gas index. Tellus Series B - Chem. Phys. Meteorol. 58, 614-619.
- Hofmann, D.J., Butler, J.H., Tans, P.P., 2009. A new look at atmospheric carbon dioxide. Atmos. Environ. 43, 2084-2086.
- Lee, S.C., Chang, M., 1999. Indoor air quality investigations at five classrooms. Indoor Air 9, 134–138.
- Lee, S.C., Chang, M., 2000. Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere 41, 109-113.
- Mendell, M.J., Heath, G.A., 2005. Do indoor pollutants and thermal conditions in schools influence student performance? a critical review of the literature. Indoor Air 15, 27-52.
- Newman, S., Xiaomei, X., Affek, H.P., Stolper, E., Epstein, S., 2008. Changes in mixing ratio and isotopic composition of CO_2 in urban air from the Los Angeles basin, California, between 1972 and 2003. J. Geophys. Res. 113, 1–15.
- O'Leary, M.H., 1988. Carbon isotopes in photosynthesis. BioScience 38, 328-336.
- Pataki, D., Bowling, D.R., Ehleringer, J.R., 2003. Seasonal cycle of carbon dioxide and its isotopic composition in an urban atmosphere: anthropogenic and biogenic effects. J. Geophys. Res. 108, 4735.
- Pataki, D.E., Xu, T., Luo, Y.Q., Ehleringer, J.R., 2007. Inferring biogenic and anthropogenic carbon dioxide sources across an urban to rural gradient. Oecologia 152, 307-322.
- Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, J., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., Stievenard, M., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429-436.
- Roberson, D.S., 2006. Health effects of increase in concentration of carbon dioxide in the atmosphere. Curr. Sci. 90, 1607-1609.
- Santamouris, M., Synnefa, A., Asssimakopoulos, M., Livada, I., Pavlou, K., Papaglastra, M., Gaitani, N., Kolokotsa, D., Assimakopoulos, V., 2008. Experimental investigation of the air flow and indoor carbon dioxide concentration in classrooms with intermittent natural ventilation. Energy Build, 40, 1833-1843.
- Schoeller, D.A., Klein, P.D., Watkins, J.B., Heim, T., MacLean Jr., W.C., 1980. 13C abundances of nutrients and the effect of variations in ¹³C isotopic abundances of test meals formulated for ¹³CO₂ breath tests. Am. J. Clin. Nutr. 33, 2375–2385.
- Shendell, D.G., Prill, R., Fisk, W.J., Apte, M.G., Blake, D., Faulkner, D., 2004. Associations between classroom CO₂ concentrations and student attendance in Washington and Idaho. Indoor Air 14, 333-341.
- Widory, D., Javoy, M., 2003. The carbon isotope composition of atmospheric CO₂ in Paris. Earth Planet. Sci. Lett. 215, 289-298.
- Zimnoch, M., Florkowski, T., Necki, J.M., Neubert, R.E.M., 2004. Diurnal variability of δ^{13} C and δ^{18} O of atmospheric CO₂ in the urban atmosphere of Kraków, Poland. Isot. Environ. Health Stud. 40, 129-143.