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Abstract Natural areas near human-modified landscapes experience factors that may

affect local biodiversity at levels commensurate with natural environmental factors. The

land snails of the Canary Islands provide excellent opportunities to evaluate the importance

of anthropogenic agents in mediating the diversity and distribution of species. Land snails

are particularly sensitive to disturbance and are an integral part of terrestrial ecosystems.

This study analyzed the distributions and abundances of terrestrial macrosnail shell

assemblages at 60 localities throughout the coastal scrub biome of the Canary Islands. This

was accomplished using data on natural and anthropogenic variables to assess their relative

importance in governing land snail diversity. A total of 34,801 dead shells represented a

diverse malacofauna with highly localized endemism. Due to uncertain species identifi-

cations, samples from the 18 sites from the two easternmost islands are described, but

excluded from statistical analyses. Regression tree analysis indicated that proximity to

agricultural sites was the most important predictor of species diversity. Sites with no or

very little agricultural area (B 0.167 km2) within a 1 km radius had significantly higher

richness and diversity. These results have implications for Canary Islands conservation.

Protected areas that are patchworks of natural and agricultural landscapes are still subject

to native biodiversity loss because of anthropogenic impacts even when the footprint of

agriculture is small.
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Introduction

Anthropogenic landscape modification often has unintended ecological consequences on

nearby species and communities (Fischer and Lindenmayer 2007). Crops, buildings, and

infrastructure directly replace portions of natural systems. In addition, anthropogenic

development can also obstruct species’ movements across landscapes or contribute to

environmental degradation through pollution or unnaturally high nutrient availability,

which can produce haloes of radiating ecological impacts. Quantifying how anthropogenic

activities impact the biodiversity of nearby landscapes is critical to successful conservation

initiatives.

Historical records of biodiversity predating human modification tend to be rare and

incomplete, limiting information on pre-disturbance baselines. When changes over time

cannot be observed, some studies have successfully used changes over space instead,

comparing community structure between disturbed areas and areas that are relatively

pristine (McKinney 2008 and sources cited therein; McDonnell and Hahs 2008 and sources

cited therein; Horsák et al. 2009, 2013; Lososová et al. 2011; Kolbe et al. 2016). Most of

these studies sought to hold fixed the influence of natural factors by limiting the study area,

for example, to a single city and its surroundings. Here, we constrain natural variability by

focusing on a single biome found across a wide geographic range that is impacted by a

variety of anthropogenic pressures. Conservation efforts often focus on areas that have not

been developed and could be informed by studies focusing on human impacts that spread

into natural areas. This could allow improved detection of situations in which a community

may appear intact, but may actually be in a state of decline.

Here, we quantify the ecological impact of anthropogenic factors at a geographical scale

directly applicable to conservation efforts. We focus our study on the semi-arid coastal

scrub biome of the Canary Islands. We assess anthropogenic pressures on each site by

quantifying nearby landscape modification. Native land snail diversity has been shown in

other studies to be an early indicator of broader ecosystem disruption (McMillan et al.

2003; Čejka et al. 2008; Lososová et al. 2011; Yanes 2012a; Douglas et al. 2013). Because

natural factors in the Canarian coastal scrub are fairly homogenous, biodiversity may be

expected to be fairly constant unless affected by other factors. We hypothesize that

proximity to human-modified landscapes has a negative effect on the diversity of native

malacofauna of the Canarian coastal scrub.

Land snails are particularly advantageous for biodiversity assessments. After death, they

often leave behind their shells, which can be plentiful and are easily collected. Land snail

shell assemblages are a close match to the living assemblages from which they derive

(Rundell and Cowie 2004; Pearce 2008; Thurman et al. 2008; Cernohorsky et al. 2010;

Yanes 2012b; Albano 2014). These shell assemblages include many years to decades of

accumulation. Such time-averaging reduces population fluctuations due to ephemeral

variations in environmental factors (e.g., an unusually wet year). Instead, shell assemblages

provide a rolling, long-term average composition of the living community, which is

valuable for investigating long-term population trends and assessing community response

to environmental change (Kidwell 2007; Pearce 2008; Albano 2014; Yanes 2012a). Unlike

the multi-millennial ages of marine shell assemblages in many coastal settings (Kowa-

lewski et al. 1998; Kidwell et al. 2005), Pearce (2008) found that land snail shells in a
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temperate forest had a half-life of 7.5–11.5 years and suggested this may be much longer in

arid, carbonate-rich settings (like the Canarian coastal scrub). A variety of studies have

taken advantage of these characteristics of land snail shell assemblages to study, e.g.,

urban–rural gradients (Horsák et al. 2009, 2013; Lososová et al. 2011), forest succession

after logging (Douglas et al. 2013), anthropogenic impacts on live-dead fidelity (Yanes

2012a, b), national park management (Götmark et al. 2008; Bros et al. 2016), and heavy

metal pollution (Regoli et al. 2006). Their use as sentinel species at a broad geographic

scale, however, has not been tested.

Methods

Field methods

The coastal scrub biome’s relatively consistent climate and vegetation throughout the

seven Canary Islands allow the investigation of the biodiversity response in a single wide-

ranging environment to a spectrum of anthropogenic impacts. For example, moisture

availability is one of the most important natural factors controlling land snail distribution

(Cook 2001), and the coastal scrub is relatively uniformly semi-arid. Average annual

precipitation ranges from 150 to 400 mm among all sites, varying by about 100 mm among

the sites on any given island. The coastal scrub also has fairly clear boundaries with

adjoining biomes, abundant land snails with high preservation potential due to generally

calcium-rich soils (Fernández Caldas et al. 1987), and is the only biome present on all

seven islands. The coastal scrub also occurs near agriculture and urban development, as

well as in relatively pristine areas.

To identify sampling sites, the European Environment Agency’s (EEA) coordination of

information on the environment (CORINE) land cover inventory (EEA 2013) was used.

Human-modified areas were first broadly categorized as ‘‘agricultural’’ or ‘‘artificial’’ (the

latter including urban, recreational, and industrial areas) following EEA (1995) nomen-

clature. Natural areas that the EEA identified as ‘‘sclerophyllous vegetation’’ within 5 km

of the coast were considered coastal scrub. On each island, targeted areas included natural

coastal scrub vegetation that was: (1) adjacent to or surrounded by agricultural and arti-

ficial landscapes; (2) in remote areas; or (3) somewhere in between. Within these areas, the

presence of typical coastal scrub flora (e.g., Euphorbia, Schizogyne, Launaea, Lycium

[Otto et al. 2006]), an elevation below 500 m a.s.l., and accessibility determined the

placement of sites.

This study sampled 60 sites in the coastal scrub biome throughout the Canary Islands

(Fig. 1). In general, more sites were sampled on larger islands, but at least six were

sampled on each island. The methods prescribed by Cameron and Pokryszko (2005), and

Coppolino (2010) were used to collect land snail specimens. Initial prospecting of sites

ensured the presence of snails to maximize their abundance and richness. This practice is

common for collecting macrosnails and helps to compensate for their patchy distributions

and improves detection of rare species (Szybiak et al. 2009; Coppolino 2010; Bros et al.

2016). Field methods were designed to maximize efficient detection of macrosnails and did

not include bulk sampling of soils, which has been suggested as the most effective method

for detecting microsnails (snails with shells\ 5 mm in their maximum dimension as

adults) (Coppolino 2010). Furthermore, many microsnail species are burrowing, so their

presence in mostly surficial samples may have more to do with soil processes than ecology.
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Similarly, the fragility of microsnail and semislug shells probably leads to much lower

persistence in the assemblage and, therefore, greater sampling bias against them (Cadée

1999; Ménez 2002; Pearce 2008). Therefore, microsnail and semislug specimens were

excluded from quantitative analyses.

Workers marked out 30 by 30 m plots, then visually searched for and collected any dead

snail shells for 1 h. Whenever found, living specimens were counted directly in the field,

though diversity calculations only included data from the dead snail shells. Four workers

collected specimens at each site in Tenerife, Fuerteventura, and Lanzarote; three workers

in El Hierro; and two in La Palma, La Gomera, and Gran Canaria. The only exceptions

were sites 23 and 24 in Lanzarote, and 45 in La Gomera, which had 3, 2, and 1 collector,

respectively. Counts were rarefied to compensate for this discrepancy (see Statistical

Methods).

Shells were commonly found on the soil surface, between or under rocks, or amongst

plant litter. Only identifiable shells including the apex were counted. Species were iden-

tified by comparison with specimens from the mollusk collection in the Malacology

Laboratory of the University of Cincinnati and the most recent literature (Ibáñez et al.

2006; Yanes et al. 2007, 2009, 2011a, b; Castro et al. 2012; Santana et al. 2013; Alonso

and Ibáñez Alonso and Ibáñez 2015a, b, c), and with the assistance of local experts (see

Acknowledgements).

Ten factors (natural and anthropogenic) were used to describe collection sites. These

were selected from 40 environmental factors initially explored. When factors were strongly

correlated—having an R2 of 0.6 or greater—we selected the factor that was more general

or more simply derived (see details in Appendix Table 3). The three independent

anthropogenic factors included were: the total agricultural area within a 1 km radius of the

site; the total artificial area (human-modified area other than agriculture) within a 1 km

radius of the site; and the distance from the site to the nearest road of any kind. The six

natural factors included were: the distance to the nearest stream; average minimum annual

temperature; area of coastal scrub vegetation within a 1 km radius of the site; the dip of the
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site’s slope; the northness of the slope’s aspect (i.e., a slope facing due north = 1, due

south = 0); and the eastness of the slope’s aspect (i.e., a slope facing due east = 1, due

west = 0). The tenth factor included was the patchiness of coastal scrub vegetation within

a 1 km radius of the site, a factor influenced by both natural and anthropogenic forces. This

final factor was measured as the total area of coastal scrub vegetation (km2) within 1 km of

the site, divided by total length of edges shared with other area types (km), and multiplied

by p so a value of 1 indicated solid coastal scrub vegetation around the site, while, as area

decreased and/or edge length increased, the value would approach 0. Topographical data

were taken from the EEA Elevation map of Europe (EEA 2004). Climatic and population

data were taken from the WorldClim global climate data set (Hijmans et al. 2005). All

geographic analyses were performed using ArcGIS Desktop release 10.3 (ESRI 2014).

Statistical methods

Hill numbers (Hill 1973) were used to report diversity statistics. Following Chao et al.

(2014), the three Hill numbers used are referred to as richness, Shannon diversity, and

Simpson diversity, and are reported in units of species equivalents (‘‘the effective number

of equally common, equally distinct species’’ [Chao et al. 2014]). Most measures of

diversity, including Hill numbers, are sensitive to sampling effort, and, as noted earlier,

samples were collected with some variation in number of collectors (from 1 to 4). To

mitigate this, samples were rarefied after Chao and Jost (2012). Rarefaction curves were

created by finding a sample’s expected richness at many subsample sizes. These demon-

strated how richness increased with increased subsample size for each sample. Sample

completenesses were reduced to that of the least complete sample (sample 33, having 73

individuals and an estimated completeness of 0.9867), such that each sample’s rarefaction

curve terminates at the same angle, allowing diversity measurements to be compared

(Supplementary Material Table S1).

In addition to sampling effort, differences in sampling quality among collectors was

examined. To accomplish this, we compared the number of species each collector

encountered at the 26 sites where all four were present. The median number of species

encountered at a site was calculated and subtracted from the number of species each

collector encountered. A Tukey’s test (Tukey 1949) was performed on the resulting scores

to detect whether any collectors encountered consistently more or fewer species. We were

also concerned that diversity patterns across space may be influenced by geography (sites

nearer each other might have similar diversities merely because of their proximity).

Moran’s I (Moran 1950) was calculated for diversity measures across all sites as well as for

each island to test for spatial autocorrelation.

Rarefied richnesses at sites including introduced species were compared to those with

only natives using Welch’s t test (Welch 1947). This test was favored over the Student’s

t-test because of unequal sample sizes and variances. To detect signs of invasiveness (the

negative impacts on native biodiversity due to introduced species), native diversity was

compared between sites with and without introduced species.

Regression trees were used to evaluate the strength of the effects of natural and

anthropogenic drivers on biodiversity (richness, Shannon diversity, and Simpson diver-

sity). A regression tree is a machine learning technique that creates a hierarchical ranking

of variables that best explain the distribution of a response variable. The algorithms use the

predictor variables to recursively split the data into two groups until the total variance of

the response variable is minimized. The variable that minimized the variance is considered

to have the most explanatory power. The process is repeated on subgroups until further
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splits do not improve the model. To avoid overfitting, we used the one standard error rule

(Breiman et al. 1984), which is a standard pruning procedure to remove splits that do not

sufficiently improve the model. (Breiman et al. 1984; Lemon et al. 2003; Hothorn et al.

2015).

All statistical analyses were performed using RStudio vers. 0.98.1091 (RStudio Team

2015) and R vers. 3.2.4 (R Development Core Team 2016). Regression trees were pro-

duced using the party package (Hothorn et al. 2015). Rarefaction was performed with the

iNEXT package (Hsieh et al. 2016).

Results

Land snail species composition and distribution

Sixty sites distributed among the seven Canary Islands yielded 34,801 land snail shell

specimens. Sites varied in richness from 1 to 14 species and in abundance from 34 to 2,770

individuals.

Rarefaction of species richness (Fig. 2) illustrated the great range of richness and

compositions encountered. For example, site 30 (Lanzarote) had a single species that was

highly abundant, while site 6 (Tenerife) included fewer individuals than most sites, yet had

13 species and a rarefaction curve that does not approach anywhere near an asymptote (i.e.,

greater sampling effort would have probably yielded many more species). Rarefaction

curves representing sites on the five westernmost islands were generally more similar,

overlapping in Fig. 2, while Lanzarote and Fuerteventura had relatively depressed curves

with low richness, despite large sample sizes. The number of species encountered on each

island and their biogeographical characters are summarized in Table 1; threatened species

are listed in Table 2; the Appendix includes detailed tables for each island (Appendix
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Table 4); and a spreadsheet compiling all sites and species is available as supplemental

material.

The community structure of samples from Fuerteventura and Lanzarote (the two east-

ernmost islands) was markedly different from that of the samples from the rest of the

Canary Islands. Samples from these two islands had significantly lower diversities and

evennesses compared with all other islands, despite typically higher abundances (Figs. 2,

3, 4). This is due in part to the dominant genus at all sites on Fuerteventura and Lanzarote

being Theba, which includes many cryptic species. This made accurate species identifi-

cation, and therefore diversity measurement, difficult (Greve et al. 2012). For these

Table 1 Summary of the number of large ([ 5 mm maximum dimension) land snail species recovered
from the coastal scrub biome on each island. The sums of values in each column are greater than the totals
indicated because some species are found on multiple islands. Indigenous species are native but not endemic

Island Species Endemic species Indigenous species Introduced species

El Hierro 13 10 2 1

La Palma 10 7 2 1

La Gomera 22 17 4 1

Tenerife 20 15 4 1

Gran Canaria 22 18 2 2

Fuerteventura 13 10 2 1

Lanzarote 10 7 2 1

Total 84 72 8 4

Table 2 Endemic land snail species considered vulnerable (V), endangered (E), or critically endangered
(CR) by the IUCN (2016) and encountered as shells in this study

Species and status Island Site(s) Numbers of shells (by site)

Canariella bimbachensis V El Hierro 31, 35, 36 85, 1, 171

Canariella fortunata V Tenerife 6, 9, 10 58, 25, 98

Canariella hispidula V Tenerife 11, 12 45, 34

Canariella huttereri E El Hierro 33, 34 1, 76

Canarivitrina falcifera CR La Gomera 47 1

Hemicycla eurythyra V Tenerife 6 6

Hemicycla plicaria CR Tenerife 11 15

Hemicycla pouchet V Tenerife 10 109

Monilearia arguineguinensis CR Gran Canaria 60 122

Monilearia granostriata CR Fuerteventura 17 3

Napaeus isletae CE Gran Canaria 58 21

Napaeus rupicola V La Gomera 45, 49, 50 3, 2, 2

Obelus discogranulatus E Fuerteventura 17

Theba grasseti E Gran Canaria 58, 59 37, 15

Theba impugnata V Lanzarote 27 306

Xerotricha pavida E La Palma 38, 40, 42 19, 18, 18
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reasons, samples from these two islands are included in qualitative descriptions below, but

were excluded from the quantitative analyses.

Eighty-four macro snail species from the coastal scrub biome, including 72 Canary

Islands endemics, eight non-endemic natives, and four introduced species (Table 1) were

recovered. Of these, subsequent analysis excluded six semislug species (terrestrial gas-

tropods unable to retract fully into their shell) and five microsnail species. Specimens of

Ferussacia folliculus were also excluded because, though they may reach 9 mm in length,

all individuals encountered were smaller than 5 mm and were therefore subject to the same

potential collection biases as microsnails. While not analyzed, abundances of recovered

microsnails and semislugs are included in Appendix Table 4.

The great majority of macrosnail species encountered were highly endemic: 69 were

single-island endemics and 27 of these were found at only one site and 23 at only two.

Sixteen species listed as threatened by the IUCN (2016) were recovered (Table 2). These

included Monilearia arguineguinensis, a critically endangered species that has sometimes

been thought to be extinct (Fernández-Palacios and Whittaker 2008), but with shells

making up * 60% of the site 60 sample. This further emphasizes the need for intensive

and comprehensive land snail surveys in the Canaries, as the conservation statuses of most

species are unknown or questionable.

Several species were found on multiple islands. Theba geminata, though almost cer-

tainly an endemic species complex (Greve et al. 2010, 2012), was encountered on three

islands (Fuerteventura, Lanzarote, and Gran Canaria), with 12,364 shells (nearly as many

as all other species combined) recovered from 20 sites. Where it occurred, T. geminata

made up more than 50% of individuals in all but three sites. The Canary Island endemic
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Monilearia persimilis was collected on Gran Canaria, La Palma, El Hierro, and Tenerife.

Non-endemic native Rumina decollata—a well-known invasive species in North America

(Cowie 2001a)—was encountered on all islands except Tenerife and La Palma. It typically

made up * 10% of samples when present, but nearly 97% of the site 48 sample from La

Gomera, with hundreds of individuals. The non-endemic native Caracollina lenticula was

the only species found on all seven islands, occurring in all but eight samples.

Four introduced macrosnail species were collected. There is no published evidence that

human-introduced snail species in the Canaries have become invasive, generally defined as

causing environmental or economic harm or harm to human health. There was no evidence

that sites with introduced species had significantly different diversity than sites with only

native species (Welch’s t-tests, p[ 0.05). As this study is focused on the drivers of native

species diversity, and because introduced species may have different distribution patterns

than native species—e.g., being more likely than native species to be synanthropic and

exhibiting higher diversity in anthropogenically influenced areas (McKinney 2008; Horsák

et al. 2013)—they were removed from all subsequent analyses.

While collectors tended to collect similar numbers of species, one of the four collected

significantly fewer than one other (Tukey’s test, p = 0.0046, see supplementary material

Fig. S1 for details), while the numbers collected by the other three did not differ from each

other. This one collector also contributed the fewest samples. To reduce variation caused

by differences in collection effort while retaining the greatest amount of data, the ten

samples contributed by this collector were excluded from further analysis (though they are

included in the raw dataset, available as supplementary material).
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In total, 13,808 native macrosnails were collected from 42 sites on the five westernmost

islands. After rarefaction, subsequent analyses were conducted on 1937 representative

specimens from these sites.

Environmental factors controlling biodiversity

Tests for autocorrelation revealed none at either the archipelago or island scales. Sites

nearer each other geographically did not appear to be any more similar than more distant

sites. Thus, spatial autocorrelation should not interfere with detection of the influence of

the various environmental factors. Further details, correlograms, and variograms illus-

trating these results are available in the supplementary material (Figs. S2–S7).

The regression tree of richness (Figs. 5, 6) indicates that total area of agriculture within

1 km of the site had the greatest explanatory power. The first split was between lower-

diversity sites with greater than 0.167 km2 of agriculture within a 1 km radius, and higher-

diversity sites with less. This variable explained 25.0% of the variance in richness between

the groups. The larger and relatively less diverse group could be further split by the

eastness of the slope’s aspect, with a score of 1 indicating a slope facing due east, -1 due

west, and 0 due north or south. This split occurred at 0.411, meaning that eastward facing

sites tended to have lower diversity, while slopes facing all other directions generally had

higher diversity. The Shannon diversity and Simpson diversity regression trees were very

similar to the richness tree and may be found in the supplementary material (Figs. S8–S11).

Cross validation errors for all trees are also shown in the supplementary material

(Figs. S12–S14).
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Discussion

Qualitative observations

The land snail fauna of the Canarian coastal scrub includes a large majority of endemic

species. Of 82 macrosnail species encountered, 72 were endemic to the Canaries and 69

were endemic to a single island. The coastal scrub of the five western Canary Islands

supports 60 endemic snail species, nearly all of which are highly localized. These islands

are rugged and the coastal scrub is divided by high and relatively wet ridges; barriers that

may promote within-island allopatric speciation. Similar islands within an island patterns

have been detected in Madeira (Cameron et al. 1996) and the Azores (Jordaens et al. 2009).

Studies of Pacific Island systems have noted a marked homogenization of malacofauna

with increasing anthropogenic impact (Cowie 2001b, c). This was not observed in the

Canarian coastal scrub. Invasive species are the primary causes of homogenization, so their

absence in the Canaries may explain this difference. Site 33, nearest to the airport on El

Hierro, was the only site with a majority of non-native individuals. The abundances and

proportions of native species, however, were not noticeably unusual relative to other sites

on the island. Site 38, on the outskirts of the town of La Playa de Santiago on La Gomera,

was also unusual in having a great abundance and near monoculture of the native species

Rumina decollata. At the 14 other sites where it was present, it made up only * 7% of

individuals on average.

The Canary Islands’ native malacofauna has experienced no known historical extinc-

tions. Yet their often small ranges, the ongoing development of the coastal scrub, and their

sensitivity to even low levels of agricultural development suggest they are susceptible to

human habitat modification.
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Quantitative results

The results of this study indicate that the effects of anthropogenic factors on biodiversity in

natural areas can be quantified when natural factors are sufficiently constrained. Regression

tree analyses found that anthropogenic factors had greater power for explaining diversity

than did natural factors. Although the environmental parameters explored in this study may

not be the direct causes of diversity structuring, they are useful proxies for any ultimate

causes. For example, our model recognizes agricultural impacts as the largest (negative)

driver of native diversity: agriculture encompasses a wide range of human activities and

impacts, including increases in the numbers of rats and other invasive species, and pes-

ticide contamination. Many of these stressors may negatively impact snail species.

Values highlighted by nodes of the regression tree offer insight for conservation and

landscape management, including indicating the impacts of agriculture on native snail

diversity. Importantly, snail diversity is significantly impacted with remarkably little

nearby agricultural development. The total area within a 1 km radius is 3.14 km2, so an

agricultural area of 0.167 km2 is just 5% of the available space. Of the sites with less

agriculture and overall higher diversity, three had no agriculture within 1 km, and the other

six included agriculture only at the periphery of the 1 km radius (as opposed to a small area

nearer the site). Götmark et al. (2008) similarly found land snails were highly sensitive to

nearby agriculture. This result may provide a useful guideline for the establishment or

expansion of protected areas for this unique biome.

All species richness and diversity regression trees had only one split beyond the primary

one. It was within the greater agricultural area, lower-diversity subgroup and the dividing

factor was eastness. Especially because our sites were not themselves directly modified by

people (e.g., by leveling or excavating), the direction the slope of a site faces is an

unequivocally natural factor. Orientation of a site probably affects temperature and

moisture conditions, as well as vegetation composition and structure. The Canary Islands

are subject to northeasterly trade winds that predominantly affect the islands’ eastern sides.

This alone may explain a systematic difference between east-facing sites and others.

Alternatively, because these sites only include those with nearby agriculture, it may be an

interplay between the two factors, e.g., eastern-facing slopes tend to host more impactful

kinds of agriculture. As all three regression trees had very similar results, this pattern is

robust even when more common species are weighted more heavily.

This study represents the first quantitative evaluation of the interplay of natural and

anthropogenic factors on land snail diversity in the Canary archipelago. The statistical

results, however, reflect total diversity rather than the member species that contribute to

that diversity. Because each island has a somewhat different suite of members in its

malacofauna, and there were relatively few sites per island, statistically meaningful

evaluation of changes in community composition were not possible. Future studies in the

region should incorporate additional sites and expand the number of plant biomes explored,

and thereby permit further insight into the complex relationships exhibited by natural and

anthropogenic factors in this eclectic island system.

Diversity of the native land snail fauna of the Canarian coastal scrub was negatively

affected by close proximity to human-modified landscapes. This, coupled with the apparent

lack of extinctions in the biota, suggests the geographic ranges of its constituent species are

shifting. These species, many of which are known only from single valleys (IUCN 2016),

are losing habitat to landscape modification, conversion, and development, as well as to the

more subtle impacts that radiate far into natural areas from anthropogenic sources that were
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explored here. Few species have sufficient population data, but, of those that do, many are

in decline and some are endangered (IUCN 2016). This study’s results can inform efforts to

keep this unique malacofauna intact. In particular, the seven Canarian Rural Parks and four

UNESCO Biosphere Reserves are protected areas comprising a mosaic of natural and

agricultural areas (Fernández-Palacios and Whittaker 2008). Unfortunately, our results

suggest this interweaving of agriculture and natural habitats may not sufficiently protect

some species with high sensitivities to agricultural factors.

The Canary Islands have been targeted for a variety of conservation efforts, especially

after being designated part of the Mediterranean biodiversity hyper-hotspot (Myers et al.

2000). More broadly, land snails as a group have many vulnerable species worldwide,

especially in island systems. Cowie et al. (2017) estimated that only 8.5–10% of molluscs

had had their conservation statuses assessed by the IUCN, 34% of these being Data

Deficient, though molluscs constitute 35% of known historical extinctions. Evaluating the

health of land snail communities provides valuable information on an important group, can

inform conservation efforts of vulnerable species, and may prove a logistically expeditious

way of testing for and quantifying anthropogenic disturbance. This study adds to the

growing consensus that assessments of land snail diversity are a useful and efficient way to

measure biome disturbance. This includes the use of time-averaged assemblages, which

provide valuable data on the enduring impacts of anthropogenic perturbations of local

communities.
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Table 3 Summary of measured environmental factors and the abbreviations used to encode them for
analysis

Natural factor Code Anthropogenic factor Code

Island area, kmb IsAreaa Population density as of 2000, the
most recent data available

HumPop

Island age, millions of years IsAgea Total length of roads within 1 km
buffer, km

RoadDens

Number of biomes on island IsHabDiva Distance to the nearest small road, km DistSmRd

Island ruggedness, 3D/2D area
ratio

IsRuga Distance to the nearest highway, km DistMedRd

Island’s shortest distance to the
African continent, km

AfricaDista Distance to the nearest freeway, km DistBigRd

Annual precipitation mm, 50 year
average

AnnualPrecip Distance to nearest road of any
kind, km

DistAnyRd

Maximum annual temperature �C,
50 year average

MaxAnnualT Distance to the nearest agricultural
area, km

DistAg

Minimum annual temperature
�C, 50 year average

MinAnnualT Distance to nearest artificial surface,
km

DistArt

Elevation in meters Elevation Distance to the nearest airport, km DistAir

Dip of the sites’s slope in degrees Slope Distance to the nearest urban area, km DistUrb

Direction of slope exposition
(N 5 1, S 5 2 1)

Northness Distance to the nearest dump or
landfill, km

DistDump

Direction of slope exposition
(E 5 1, W 5 2 1)

Eastness Distance to the nearest recreational
area, km

DistGolf

Coastal scrub area within 1 km
of site, km2

AreaScrub
b Distance to the nearest industrial site,

km
DistInd

Edges of coastal scrub within 1 km
buffer, km

EdgeScrubTot
b Human-modified area of any kind

within 1 km buffer, km2
AreaMod

Coastal scrub edge bordering
natural features, km

EdgeScrubNat
b Agricultural area within 1 km of the

site, km2
AreaAg

Distance to the nearest stream,
km

DistStream Artificial area (not agriculture)
within 1 km of the site, km2

AreaArt

A qualitative assignment of
agricultural or urban influence

Impactc Coastal scrub edge bordering
agriculture, km

EdgeScrubAg

Patchiness of coastal scrub area,
area/edges, km2/km

VegPatch Edges shared between artificial and
agricultural surfaces, km

EdgeArtAg

Coastal scrub edge bordering artificial
surfaces, km

EdgeScrubArt

Edges shared between artificial and
natural surfaces, km

EdgeArtNat

Coastal scrub edge bordering any
human-modified surface, km

EdgeScrubMod

Whether site is part of a gov’t
designated natural area

Protected3

aMeasurements of islands’ parameters, not individual sites
bMeasurements could result from natural or anthropogenic factors
cCategorical variables

Factors in bold are those used for statistical analyses. When groups of factors were correlated (R2 C 0.6),
the most general or simply derived factor was selected used. Sites in bold are therefore not correlated with
each other (R2\ 0.6)
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Table 4 All species are endemic to the Canary Islands except anative but not endemic, and bintroduced,
cmicrosnails (species with maximum dimension\ 5 mm as adults), dsemislugs

Sites 13 14 15 16 17 18 19 20 21 22

Fuerteventura

Canariella plutonia – – 3 2 – – 2 3 – 173

Caracollina lenticulaa 1 8 3 2 – 3 8 11 – –

Ferussacia folliculusb – – – – – – – – – 1

Granopupa granumb,c – – – – – – – – – 3

Monilearia granostriata – – – – 3 – – – – –

Monilearia monilifera 115 1 2 2 4 6 345 309 5 4

Moniliaria multipunctata 8 – – 2 – 1 – – – –

Obelus discogranulatus – – – – 15 – – – – –

Obelus moderatus – – – 122 – – – – – –

Otala lacteab – – 1 – – – 1 – – 1

Pomatias cf. lanzarotensis – – 6 2 1 – 2 – – 4

Rumina decollataa 2 24 60 – 1 – 21 6 5 220

Theba geminata 563 201 77 60 1958 900 546 838 1222 1039

Theba cf. clausoinflata – – – – – 221 – – – –

Xerotricha lancerottensis – – – – – – 8 8 – –

Site 53 54 55 56 57 58 59 60

Gran Canaria

Caracollina lenticulaa 1 28 59 10 7 6 18 46

Cernuella virgatab – – – – – 2 64 –

Ferussacia folliculusb – – – – – 1 – –

Gibbulinella dealbata – – – – – 18 – –

Granopupa granumb,c – – – – – 2 – –

Hemicycla berkeleyii – – – 40 13 – – –

Hemicycla ethelema – 54 – – – – – 23

Hemicycla glasiana – – – – – – 91 –

Hemicycla guamartemes – – 260 – – – – –

Hemicycla psathyra 51 – 77 – – – 32 –

Insulivitrina nogalesid – 1 1 – – – – –

Monilearia arguinaguinensis – – – – – – – 122

Monilearia caementitia – – – – – – 2 –

Monilearia persimilis – 26 16 – – – – –

Monilearia phalerata 73 – – 23 13 69 29 –

Napaeus interpunctatus 2 – – – – – – –

Napaeus isletae – – – – – 21 – –

Napaeus moquinianus 2 – – – – – – –

Napaeus sp. – – – – 1 – – –

Otala lacteab 2 – – – – 16 15 –

Pomatias canariensis – – – – – 183 58 –

Pomatias cf. laevigatus – 6 13 – – – – –

Rumina decollataa – – – – – 43 102 –

Theba geminata 461 – – – – 95 403 –
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Table 4 continued

Site 53 54 55 56 57 58 59 60

Theba grasseti – – – – – 37 15 –

Xerotricha conspurcatab – – – – – – 12 –

Xerotricha cf. orbignii 3 – – – – 173 – –

Site 45 46 47 48 49 50 51

La Gomera

Canariella discobolus – – – – – – 3

Canariella multigranosa – – 5 – – – –

Canariella tenuicostulata 47 54 8 – – – –

Canarivitrina falciferad – – 1 – – – –

Caracollina lenticulaa 18 192 7 1 1 31 9

Gibbulinella cf. macrogira 2 1 – – – – –

Hemicycla fritschi 68 17 2 – 6 2 –

Hemicycla gomerensis – – – – – – 166

Hemicycla laurijona – – – – – – 284

Hemicycla paivanopsis – – – 1 46 169 –

Hemicycla aff. paivanopsis 60 110 82 – – – 1

Hemicycla quadricincta – – – 10 – – 46

Napaeus bertheloti 8 1 – – – – –

Napaeus rupicola 3 – – – 2 2 –

Napaeus servus – – – – – 22 –

Obelus mirandae 8 126 86 – 38 195 32

Otala lacteab – 1 – – – – –

Pomatias cf. laevigatus 108 4 – 1 – – –

Pomatias cf. lanzarotensis – – – – – 20 –

Retinella rochebruni 15 1 – 17 – – –

Rumina decollataa – 3 3 833 – – –

Xerotricha adoptata – 62 – – – 4 –

Site 31 32 33 34 35 36

El Hierro

Canariella bimbachensis 85 – – – 1 171

Canariella huttereri – – 1 76 – –

Caracollina lenticulaa 245 117 – – 154 369

Hemicycla maugeana – 86 25 101 57 82

Insulivitrina canariensisd 4 7 – 1 4 –

Monilearia persimilis 34 44 27 – 33 50

Napaeus gruereanus – 3 – – – –

Napaeus subsimplex 10 46 – – – 1

Obelus cf. mirandae – – – 6 – –

Otala lacteab – – 99 – – –

Pomatias cf. canariensis 5 83 – – – –

Retinella hierroensis – – 18 98 – –

Rumina decollataa – – 2 – – –
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Table 4 continued

Site 31 32 33 34 35 36

Vitrea contractaa,c – 5 – – – 1

Xerotricha orbignii 9 1 – – 23 18

Site 23 24 25 26 27 28 29 30 23 24 25 26

Lanzarote

Canariella plutonia – – – – 90 – – – – – – –

Caracollina lenticulaa 1 5 15 – 110 – 5 – 1 5 15 –

Ferussacia folliculusb – – – – 6 – – – – – – –

Hemicycla sarcostoma – – – – 3 – – – – – – –

Monilearia monilifera 25 – – – 597 – 3 – 25 – – –

Otala lacteab – – 1 – 39 – – – – – 1 –

Pomatias lanzarotensis – – – – 19 – – – – – – –

Rumina decollataa – – – 12 – – 8 – – – – 12

Theba geminata 585 712 699 50 – 2261 1554 1810 585 712 699 50

Theba cf. geminata – – – – – 509 – – – – – –

Theba impugnata – – – – 306 – – – – – – –

Site 37 38 39 40 41 42 43 44

La Palma

Canarivitrina taburientensisd 1 – 2 – – – – –

Caracollina lenticulaa 103 136 202 58 90 24 78 66

Cecilioides aciculab,c – – – – – – – 1

Cornu aspersumb – 12 2 10 – – 8 –

Ferussacia folliculusb – 15 1 – – – 5 –

Gibbulinella dewinteri 11 4 10 – 5 – – 8

Hemicycla fuenterroquensis – 4 – – 1 7 – –

Insulivitrina solemid – – – 5 – – – 5

Monilearia persimilis 172 277 243 121 65 139 307 50

Napaeus encastus – – – 20 – – – –

Napeus subgracilior – 14 14 – – – – 2

Retinella lenis – – – 5 – – 2 –

Vitrea contractaa,c – – – – 1 – – 1

Xerotricha pavida – 19 – 18 – 18 – –

Canarivitrina taburientensisd 1 – 2 – – – – –

Site 1 2 3 4 5 6 7 8 9 10 11 12

Tenerife

Canariella fortunata – – – – – 58 – – 25 98 – –

Canariella hispidula – – – – – – – – – – 45 34

Caracollina lenticulaa 3 60 184 63 292 98 53 78 70 208 147 78

Ferussacia attenuatac – – 1 – – – – – – – – –

Ferussacia folliculusb – – – – – – – – – 4 – –

Gibbulinella dewinteri – – – – – 10 – – – 6 – –

Granopupa granumb,c 13 8 1 5 9 – – – – – – –

Biodivers Conserv (2018) 27:395–415 411

123



References

Albano PG (2014) Comparison between death and living land mollusk assemblages in six forested habitats
in northern Italy. Palaios 29(7):338–347
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