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Abstract
Thyroid hormone (TH) signaling comprises TH transport across cell membranes, metabolism by

deiodinases, and molecular mechanisms of gene regulation. Proper TH signaling is essential for

normal perinatal development, most notably for neurogenesis and fetal growth. Knowledge of

perinatal TH endocrinology needs improvement to provide better treatments for premature

infants and endocrine diseases during gestation and to counteract effects of endocrine disrupting

chemicals. Studies in amphibians have provided major insights to understand in vivo mechanisms

of TH signaling. The frog model boasts dramatic TH-dependent changes directly observable in

free-living tadpoles with precise and easy experimental control of the TH response at develop-

mental stages comparable to fetal stages in mammals. The hormones, their receptors, molecular

mechanisms, and developmental roles of TH signaling are conserved to a high degree in humans

and amphibians, such that with respect to developmental TH signaling “frogs are just little people

that hop.” The frog model is exceptionally illustrative of fundamental molecular mechanisms of in

vivo TH action involving TH receptors, transcriptional cofactors, and chromatin remodeling. This

review highlights the current need, recent successes, and future prospects using amphibians as a

model to elucidate molecular mechanisms and functional roles of TH signaling during post-

embryonic development.
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1 | THYROID HORMONE SIGNALING
DURING HUMAN PERINATAL
DEVELOPMENT

Lack of thyroid hormone (TH) during perinatal development causes

debilitating mental deficits and short stature known as cretinism

(Delange, 2005), but even subtle reductions in TH signaling can cause

significantly lower IQ (Biondi & Cooper, 2008). Mutations in compo-

nents of TH signaling, such as TH receptors, plasma membrane TH

transporters, deiodinases, and cytosolic TH binding proteins cause vari-

ous forms of hypo- and hyperthyroidism (Abe et al., 2003; Hernandez,

Martinez, Fiering, Galton, & St. Germain, 2006; Refetoff, 2005; Visser,

W. E., Friesema, & Visser, T. J., 2010). Endocrine disrupting chemicals

that interfere with any of these TH signaling components can also

compromise short-term and long-term health and fitness (Gore et al.,

2015).

The critical dependence on appropriate TH signaling for proper

development of the brain and other organs motivates efforts to

look for treatment options during pregnancy with jeopardized TH

signaling, such as in Hashimoto’s thyroiditis, Grave’s disease, pre-

mature birth, and endocrine disruption. Unfortunately, many mech-

anisms pertinent to perinatal endocrinology are not well

understood, and studies are needed to reduce known and unknown

treatment consequences for fetal growth and development (For-

head & Fowden, 2014). The fact that the rate of preterm delivery

with incomplete TH-dependent organ maturation is increasing

despite extensive efforts to stop it and the increasing prevalence

of endocrine disrupting chemicals points to the importance of

broadening the net of basic research to better diagnose, treat, and/

or prevent medical issues that may affect perinatal development

(Goldenberg, Culhane, Iams, & Romero, 2008; Wang, Chen, W.,

Chen, C., 2014).
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2 | THE VALUE OF XENOPUS TO STUDY TH
SIGNALING DURING DEVELOPMENT

Understanding the critical, complex, and experimentally intractable

period of perinatal development in humans requires studies in model

organisms. Model organisms provide simplified systems that are acces-

sible and easily manipulated and can reveal the basic operating princi-

ples and disease etiologies associated with TH signaling that are nearly

the same across vertebrates. Mice are the most commonly used model

to study human health and disease because of their small size, ease of

breeding in lab, and evolutionary closeness to humans. However, stud-

ies to elucidate developmental mechanisms of TH signaling are con-

strained in mammalian systems by the difficulty of observing relatively

subtle or cryptic TH-dependent changes and of obtaining samples from

fetuses in utero. An additional difficulty is that fetal tissues are con-

stantly exposed to maternal hormones through the placenta (Forhead &

Fowden, 2014), such that manipulation of fetal endocrine signaling to

examine receptor function in plus or minus hormonal states is difficult

to achieve without potentially introducing artifacts from altered mater-

nal endocrine physiology. Furthermore, as with all model systems, none

can fully recapitulate the human situation. For example, mutations in

the TH transporter MCT8 in humans cause the crippling disorder, Allan-

Herndon-Dudley syndrome (Friesema et al., 2004), whereas equivalent

mutations in mice are nearly asymptomatic (Heuer & Visser, 2013).

For elucidating the molecular mechanisms of TH signaling during

development, amphibians have intrinsic experimental advantages that

make them the model of choice for several reasons (Figs. 1, 2). First,

the dramatic TH-dependent molecular and morphological changes that

occur during metamorphosis are unrivaled among terrestrial verte-

brates (Dent, 1968). Second, tadpoles are large and accessible through-

out their development, including TH-dependent stages, comparable to

perinatal stages in humans (Buchholz, 2015). Third, signaling via TH

and their receptors is necessary and sufficient to initiate nearly all

developmental events during metamorphosis (Das et al., 2010; Dodd &

Dodd, 1976). Fourth, plasma levels of TH undetectable by radioimmu-

noassay occur naturally during the frog larval period prior to metamor-

phosis (Leloup & Buscaglia, 1977), indicating that virtually all TH

receptors in vivo are in the unliganded condition. Fifth, endogenous TH

levels increase to a peak at metamorphic climax (Leloup & Buscaglia,

1977), such that simple exogenous addition of TH to the rearing water

during premetamorphosis enables precise temporal control of TH

receptors to the liganded state that can mimic natural metamorphosis

(Dodd & Dodd, 1976). Sixth, mechanisms of TH signaling in gene regula-

tion and development are highly conserved between frogs and humans

(see below), such that fundamental processes can be worked out in frogs

and then applied to specific situations in mice and humans. Seventh,

amphibians produce large numbers of free-living eggs and embryos that

are easy to culture without specialized media or temperature require-

ments making tadpole studies fast, easy, and cheap with respect to com-

parable stages in mice (i.e., perinatal stages). Thus, because frogs are

easy to breed and maintain in the laboratory, are the closest relatives to

humans with easily accessible embryos, and have all the modern tools of

a genetic model system, such as a sequenced genome (Hellsten et al.,

2010; Session et al., 2016), an ORFeome (Grant et al., 2015), and estab-

lished methods for gene knockout (Tandon, Conlon, Furlow, & Horb,

2016) and transgenesis (Buchholz, 2012; Ishibashi, Love, & Amaya,

2012), amphibian development is a particularly compelling model system

from experimental and fiscal perspectives for use in elucidating TH sig-

naling applicable to human perinatal development.

3 | CONSERVATION IN TH SIGNALING
BETWEEN FROGS AND MAN

Many developmental events are regulated by TH in common in

humans and frogs, including central and peripheral nervous systems

(Kollros, 1981; Patel, Landers, Li, Mortimer, & Richard, 2011; Pr�eau, Le

Blay, Saint Paul, Morvan-Dubois, & Demeneix, 2016; Thompson &

Cline, 2016), musculoskeletal growth and development (Dodd & Dodd,

1976; Van Vliet, 2005), and interaction with glucocorticoids to promote

terminal organ maturation (Buchholz, 2015; Fowden & Forhead, 2013).

Underlying these conserved TH-dependent developmental events are

conserved molecular components (Fig. 3) (Buchholz, Paul, Fu, & Shi,

2006; Furlow & Neff, 2006). As in mammals, amphibians have two

types of TH receptors (TRa and TRb) (Helbing, Gergely, & Atkinson,

1992; Schneider, Davey, & Galton, 1993; Wang, Matsuda, & Shi, 2008;

FIGURE 1 Conservation in endocrine mechanisms of TH signaling

during development in mammals and amphibians. (a) During the
aquatic to terrestrial transitions at birth and metamorphosis, humans
and frogs each have a peak in plasma TH level, which most notably
regulates neurogenesis and skeletal growth and development (G &
D). (b) TH affects these processes in frogs to a higher degree than in
mammals in order to accomplish the dramatic changes in diet
(herbivorous to carnivorous) and locomotion (swimming to jumping).
(c) A notable difference between groups is that TH is virtually absent
in tadpole plasma (dashed line) until after limb bud development,
whereas human and rodent fetuses are exposed to maternal TH
starting at neural tube closure (Forhead and Fowden 2014), such
that a distinct, experimentally advantageous switch from an
unliganded to liganded condition of the TH receptors occurs
naturally only during frog development.
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Yaoita, Shi, & Brown, 1990) with similar alternative splicing of multiple

mRNA isoforms and high amino acid sequence similarity (Yaoita et al.,

1990). In addition, mammals and frogs share similar TR heterodimer

partners (retinoic acid receptors alpha, beta, gamma), TR-associated co-

repressors and co-activators, and canonical TH response elements in

enhancer or promoter regions of TH target genes (Furlow & Neff,

2006). Furthermore, all known vertebrate TRs commonly bind genomic

DNA sequences consisting of two direct repeats of a consensus hex-

americ AGGTCA sequence separated by four nucleotides (Das, Heime-

ier, Buchholz, & Shi, 2009). Prior to TR binding, TH enters cells in

mammals and frogs via conserved TH transporters (Lat1, MCT8,

MCT10, OATP1c1 (Choi, Moskalik, Ng, Matter, & Buchholz, 2015;

Connors, Korte, Anderson, & Degitz, 2010; Ritchie et al., 2003)), fol-

lowed by deiodinase-mediated metabolism (deiodinases I, II, III, (Brown,

2005; Kuiper et al., 2006)) and possibly binding cytoplasmic proteins

(CRYM, PKM2, and others (Choi, Moskalik, et al., 2015; Shi, Liang, Par-

kison, & Cheng, 1994; Yamauchi & Tata, 2001)). Thus, amphibian TH

signaling behaves as in humans to regulate many developmental events

in common via comparable mechanisms with similar cytoplasmic TH

signaling components and nuclear receptors (Wong & Shi, 1995).

FIGURE 2 Comparison of mouse and frog models for study of in vivo TH signaling during development. Several unique aspects in frogs
provide advantages for serving as a model to elucidate molecular mechanisms of TH signaling during development in vertebrates including
humans. The key natural history assets for frogs are their exaggerated TH-dependent development, large clutch size, and free-living
embryos/tadpoles giving rise to (1) ease of observation, tissue accessibility, and hormone manipulation, (2) lack of influence of maternal
endocrine system on fetal development, and (3) natural development with unliganded TRs. The shorter generation time, historical advantage
of mice for genome manipulation, and evolutionary closeness to humans are powerful aspects of the mouse model for TH signaling studies.
However, with advances in gene disruption technology and sequencing of X. tropicalis and X. laevis genomes, the disparity in genomics tools
between frogs and mice is closing.

FIGURE 3 Conservation in molecular mechanisms of TH signaling in mammals and amphibians. Processes from TH transport into the cell
to altered gene expression share homologous proteins and mechanisms in humans and frogs. (1) TH transporters, such as LAT1 and MCT8,
enable TH entry into cells where (2) deiodinase type I, II, and III function to remove iodine atoms from TH to activate or deactivate it.
Before entry into the nucleus, (3) cytoplasmic TH binding proteins (CTHBPs), e.g., mu-crystallin, modulate cytoplasmic occupancy. In the cell
nucleus, (4) TH receptor (TR) heterodimerizes with retinoid-X-receptor (RXR) and binds to DNA at (5) TH response elements (TREs), where
either (6) co-repressors, e.g., NCoR or SMRT, or co-activators, e.g., SRC, p300, PRMT1, CARM1, are recruited depending on (7) the absence
or presence of TH. The cofactors alter (8) the state of chromatin ultimately leading to (9) induced expression of TH response genes, e.g.,
klf9, TRb, in mammals and frogs.
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4 | RECENT ADVANCES ELUCIDATED FIRST
IN FROGS

4.1 | Role of unliganded TH receptor in post-

embryonic development

The action of TH receptors (TRs) on gene regulation depend on TH,

such that TRs actively repress genes in the absence of TH and induce

those same genes in the presence of TH (Cheng, Leonard, & Davis,

2010). Such ligand-dependent gene regulation was derived from in-

vitro cell culture studies, but the dual function model for how TRs

might act during development was first proposed in frogs to account

for TR action during critical periods of tissue differentiation when TRs

transition from unliganded to liganded states (Buchholz et al., 2006;

Sachs et al., 2000; Shi, 2009; Yaoita & Brown, 1990). Numerous stud-

ies in frogs and mice established that TR-mediated gene induction in

response to TH is required for tissue differentiation, but only recently

were two groups, working in frogs, able to address the role of unli-

ganded TRa during development (Choi, Suzuki, et al., 2015; Wen & Shi,

2015). Using TALENs, they showed that TRa knockout led to earlier

initiation of metamorphosis and acceleration of development caused

by higher TH response gene expression from lack of TRa-mediated

repression. Equivalent knockout models were previously made in mice

(Flamant & Samarut, 2003), but effects of unliganded TRs have not

been unequivocally demonstrated (Bernal & Morte, 2013), revealing

the importance of the frog model to detect activities of TR during

development. The production of a knockout of TRb is highly expected

to define the relative contribution of each TR isoform.

4.2 | Identification of TH direct response genes in

developing tissues

The effects of TH on development are mediated mainly through tran-

scriptional regulation of TH response genes (Buchholz, Tomita, Fu,

Paul, & Shi, 2004). Identification of such direct response genes is thus

of critical importance in understanding TH action during development.

However, only a limited number of direct T3 response genes are

known in different model systems, thus hampering our understanding

of how TH regulates development in vivo. The first global analysis to

identify such genes in development was conducted in frogs using

cycloheximide-treated tadpoles to block translation thereby blocking

secondary transcriptional regulation by TH-induced transcription fac-

tors (Das et al., 2009). They identified 188 up-regulated and 249

down-regulated genes by TH in the absence of new protein synthesis

in whole animals, and gene ontology analysis showed that the direct

up-regulated genes are enriched in categories important for transcrip-

tional regulation and protein degradation-dependent signaling proc-

esses but not DNA replication. These findings thus revealed the

pathways induced by TH at the earliest step of TH-dependent

development.

Another experimental approach is to use chromatin immunopreci-

pitation (ChIP) to identify direct response genes (Grøntved et al.,

2015). With ChIP-Seq technology, high throughput sequencing of puri-

fied DNA fragments enriched in TR binding sites followed by location

of sequencing reads on the genome sequence supply genome-wide TR

binding profiles. However, ChIP-seq suffers from a major limitation, as

it provides no evidence of the functional connection between the TR

binding sites and the target genes (only nearby locations can be

inferred). Furthermore, it is now clear that transcription factors can act

over large distances through DNA looping with their target promoter.

To take into account these concerns, chromatin interaction analysis by

paired-end tags sequencing (ChIA-PET) was carried out to map

genome-wide TR binding sites and to link them with their target pro-

moter by resolving long-range interaction between enhancer and pro-

moter (Buisine et al., 2015). ChIA-PET requires high-resolution genome

(assembly and annotation) that is achieved in Xenopus tropicalis (Buisine

et al., 2015; Hellsten et al., 2010) in order to provide ChIP-seq and

chromosome conformation capture analyses simultaneously. Prelimi-

nary data show that, indeed, TR can act over large genomic distances

and that identification of TR direct target genes is optimized (Buisine

et al., 2015). This study is the first to benefit from such technology

using chromatin material isolated directly from animal tissues (Buisine

et al., 2015). Analyses of the TR ChIA-PET data are ongoing. This will

represent a big step in understanding TH and TR action in a way not

yet addressed in mammals.

4.3 | Recruitment of cofactors to TH-response genes

in vivo

Numerous cofactors (corepressors and coactivators) have been found

to interact with TR using various biochemical approaches in vitro (Glass

& Rosenfeld, 2000). Genetic studies and the first use of ChIP from liv-

ing tissue was performed in frogs to elucidate cofactor recruitment in

TH/TR action in vivo during development (Sachs & Shi, 2000). Nuclear

receptor corepressor (NCoR) and histone acetylase 3 (HDAC3) are

major corepressor components recruited to TREs in the absence of TH

during early development and released following TH treatment. Experi-

mental confirmation of the importance of NCoR in TH-mediated gene

repression in vivo was first obtained in frogs using overexpression of

dominant negative NCoR by in vivo gene transfer into tadpole tail mus-

cle (Sachs et al., 2002) and later by transgenesis (Sato, Buchholz, Paul,

& Shi, 2007), which led to the loss of repression by unliganded TR and

increased tadpole development rate. Like corepressors, coactivators,

namely steroid receptor coactivator (SRC/p160), histone acetyltrans-

ferase (p300), coactivator associated arginine methyltransferase 1

(CARM1), and protein arginine methyltransferase 1 (PRMT1), were first

shown to be recruited in a TH-dependent manner to TH-response

genes in frogs in vivo during development (Matsuda, Paul, Choi,

Hasebe, & Shi, 2007; Matsuda, Paul, Choi, & Shi, 2009; Paul, Buchholz,

Fu, & Shi, 2005; Paul, Fu, Buchholz, & Shi, 2005; Paul, Buchholz, Fu, &

Shi, 2007). Recruitment of SRC3 in a gene and tissue dependent man-

ner to TREs demonstrates the value of in vivo studies (Havis, Sachs, &

Demeneix, 2003; Paul, Buchholz, et al., 2005; Paul, Fu, et al., 2005).

Transgenic overexpression of dominant negative SRC3 and dominant

negative p300, which compete for recruitment of endogenous coacti-

vators, prevented TH-dependent gene regulation and thereby caused
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delayed or arrested metamorphosis (Paul, Buchholz, et al., 2005; Paul,

Fu, et al., 2005; Paul et al., 2007).

4.4 | TH-dependent chromatin modifications in vivo

Chromatin modifications (covalent changes to DNA or histones) include

DNA methylation, post-translational histone modifications, and altered

chromatin structure, including histone composition and nucleosome

displacement or removal. All of these aspects of chromatin modifica-

tion were analyzed in the context of TH-dependent gene regulation in

amphibians (Grimaldi, Buisine, Miller, Shi, & Sachs, 2013). Antibodies

for studying chromatin modifications are against antigens highly con-

served among vertebrates, which when coupled with advantages of

metamorphosis make the frog system a superior model for elucidating

mechanisms of TH-dependent chromatin remodeling in vivo. Several

studies have shown that liganded TR induces chromatin remodeling

in vivo. First, analysis in the reconstituted frog oocyte system suggests

that TR is able to recognize a TRE within chromatin, TR makes use of

chromatin assembly process to silence transcription efficiently, and TR

directs the disruption of TRE chromatin structure in response to TH (Li,

Imhof, Collingwood, Urnov, & Wolffe, 1999; Wong, Li, Levi, Shi, &

Wolffe, 1997; Wong, Shi, & Wolffe, 1997; Wong, Shi, & Wolffe, 1995;

Wong, Liang, Sachs, & Shi, 1998). The chromatin disruption at the TRE

corresponds to the loss of 2 to 3 nucleosomes, a process that has been

observed during metamorphosis (Matsuura, Fujimoto, Fu, & Shi, 2012).

BRG1 and BAF57, recruited by liganded TR (Heimeier, Hsia, & Shi,

2008), are good candidates to remove the nucleosomes at the target

genes. In the oocyte-reconstituted system, p300 recruitment by

liganded TR modifies histones to initiate the recruitment of BRG1

(Huang, Li, Sachs, Cole, & Wong, 2003). Before metamorphosis, histo-

nes H3 and H4 are deacetylated around TRE loci in the absence of TH

and are later acetylated when TH level rises (Sachs & Shi, 2000). Many

studies in vivo in frogs have provided more detail than the analyses

done in mammals and have highlighted (1) the importance of histone

acetylation, i.e., a correlation with the levels of gene expression, TR

binding, and RNA polymerase II recruitment (Bilesimo et al., 2011; Mat-

suura et al., 2012), (2) treatment with HDAC inhibitor (Sachs & Shi,

2000; Sachs, Amano, & Shi, 2001; Sachs, Amano, Rouse, & Shi, 2001),

(3) specific lysine acetylation in agreement with cofactor recruitment

with HAT or HDAC activity (Havis et al., 2006), (4) transgenic overex-

pression of dominant positive TR (Buchholz et al., 2004) or dominant

negative TR (Buchholz, Hsia, Fu, & Shi, 2003), and (5) transgenic over-

expression of a dominant negative SRC3 (Paul, Buchholz, et al., 2005;

Paul, Fu, et al., 2005).

Histone methylation is a more complex type of modification, which

can correlate with transcriptional silencing or activation (Kouzarides,

2007). ChIP assays were carried out with antibodies against different

histone modifications in several tissues (brain, intestine, and tail fin) in

premetamorphic tadpoles and during TH-induced or natural metamor-

phosis. First, the repressive marks, H3K9 dimethylation and trimethyla-

tion, are not involved in TR-mediated TH response gene regulation

(Bilesimo et al., 2011; Matsuura et al., 2012). Second, Me3H3K27,

another repressive mark, showed a tissue-specific deposition in preme-

tamorphic tadpoles inversely correlated with the basal low level of TH-

response gene expression measured in the absence of TH (Bilesimo

et al., 2011). Following TH treatment, Me3H3K27 levels at TREs

decreased pointing to a role of Polycomb and Trithorax for regulating

TH-response genes (Bilesimo et al., 2011). Next, the level of

Me3H3K79 and Me2H3R17, two active marks, increased upon TH

treatment (Matsuura et al., 2012), suggesting the recruitment of Dot1L

to methylate H3K79 and correlating with CARM1 recruitment for

H3R17 (Matsuda, Paul, Choi, & Shi, 2007). Dot1L knockdown with

TALENs revealed its important role together with Me3H3K79 leading

to retarded growth and lethality prior to metamorphosis (Wen, Fu,

Guo, Chen, & Shi, 2015). Finally, H3K4 methylation marks are more

ambiguous because they can correlate with either activation or repres-

sion and have gene- and tissue-specific variations in the context of TH-

dependent regulation of transcription in premetamorphic tadpoles fol-

lowing TH treatment (Bilesimo et al., 2011). Histone methylation is

under intense investigation to clarify their in vivo roles in gene regula-

tion, with frog studies pushing the field, showing that H3K4 methyla-

tion levels correlated with TR binding to TRE (Bilesimo et al., 2011),

an observation in accordance with its association with mammalian

enhancer or promoter regions (He et al., 2010; Heintzman et al., 2009)

and the possible co-occurrence of the active Me3H3K4 mark with the

repressive Me3H3K27 mark (Bilesimo et al., 2011).

4.5 | Tool for screening TH-active compounds

The extreme sensitivity and responsivity of tadpoles to TH signaling

provides a great platform for assaying chemicals that affect TH signal-

ing. At the organismal level, the thyroid system represents an important

target of endocrine disruption (Boas, Feldt-Rasmussen, & Main, 2012;

Brucker-Davis, 1998), thereby prompting development of the Xenopus

metamorphosis assay for screening TH-disrupting chemicals (Opitz

et al., 2005). A high-throughput, whole-tadpole method using trans-

genic animals that express green fluorescent protein upon exposure to

TH-disrupting chemicals was also developed (Castillo et al., 2013; Fini

et al., 2007). At the receptor level, the two TR isoforms, a and b, have

distinct tissue-specific expression patterns (Cheng et al., 2010), such

that use of TR antagonists and TR isoform-selective agonists may ena-

ble targeting specific tissues and avoid affecting off-target tissue-spe-

cific side-effects. Tadpoles were the in vivo model of choice to assess

chemicals to modify TR function, including NH3 (TR antagonist (Lim,

Nguyen, Yang, Scanlan, & Furlow, 2002)), CO23 (TRa-selective agonist

(Ocasio & Scanlan, 2006)), and GC1 (TRb selective agonist (Furlow

et al., 2004)). The compounds GC1 and CO23 were then used to show

that in tadpole brain development, TRa and not TRb is responsible for

neural progenitor proliferation (Denver, Hu, Scanlan, & Furlow, 2009).

In a further use of frog metamorphosis to reveal new insights, numer-

ous microarray studies were used to identify targets of endocrine dis-

ruptors (Kulkarni & Buchholz, 2013). For example, the known

xenoestrogen bisphenol A (BPA) was shown to antagonize the regula-

tion of most TH-response genes, thereby suggesting that BPA predom-

inantly affected TH-signaling pathways during development (Heimeier,

Das, Buchholz, & Shi, 2009). More importantly, this result provided
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molecular evidence for the likely deleterious effects of BPA on human

development and the importance of studying endocrine disruption in a

developmental context in vivo.

5 | FUTURE POTENTIAL TO ELUCIDATE IN
VIVO TH SIGNALING MECHANISMS USING
FROGS

Future potential benefits regarding the preceding topics were cov-

ered in the sections above. Beyond those topics, TH signaling is

such a dominant feature of frog post-embryonic development that

many aspects of development related to or dependent on TH sig-

naling are also powerfully studied using the frog system. Such TH-

dependent processes where fundamental discoveries are being

made include neurogenesis (Denver et al., 2009; Pr�eau et al., 2016;

Thompson & Cline, 2016), origin of adult intestinal stem cells (Ishi-

zuya-Oka & Shi, 2005; Ishizuya-Oka et al., 2009), early eye devel-

opment (Havis et al., 2006; Bronchain et al, 2016), spinal cord

regeneration (Bhumika & Darras, 2013; Gibbs, Chittur, & Szaro,

2011; Lee-Liu et al., 2014), and interaction between TH and stress

hormones at global and local scales (Bagamasbad et al., 2015; Kul-

karni & Buchholz, 2012).

Of special note, because it has the potential to impact studies on

not only TH signaling but also gene regulation more generally, is the

use of the frog model in network analysis to integrate transcriptome

analyses, transcription factor binding, and epigenetic analyses to dra-

matically change how fundamental questions in biology are

addressed. Such ambitious studies depend on the exploitation of the

sequenced Xenopus tropicalis genome (Hellsten et al., 2010) and Xeno-

pus leavis genome (Session et al., 2016) and the rise of high-

throughput sequencing technologies and their applications to RNA

(RNA-Seq). The execution of biological processes induced by TH (or

any other bioregulatory molecule) requires the interaction and regula-

tion of thousands of molecules. Systematic approaches to study large

numbers of genes have revealed complex molecular networks as well

as novel insights in understanding basic mechanisms controlling nor-

mal biological processes and pathologies (Zhu, Gerstein, & Snyder,

2007). Collection of large-scale data sets has begun and is being

assembled into a network format whose topological structure con-

tains significant biological properties (Sachs unpubl.). The integration

of all interactions/modifications along with their dynamics will reveal

a more complete description of how complex biological processes

occur and can be controlled. These data based on work in frogs will

allow more precise modeling human disease and to test more accu-

rately corrective actions.

6 | CONCLUSIONS

Starting with the discovery that thyroid extracts fed to tadpoles indu-

ces metamorphosis (Gudernatsch, 1912), a century of discoveries

stemmed from metamorphosis research, highlighted by hypothalamic

and pituitary control of TH secretion (Allen, 1938; Dodd & Dodd,

1976), TH induction of mRNA and protein synthesis pointing to a

nuclear action for TH receptors (Tata, 1965, 1966), TH induction of

biochemical changes during development (Frieden & Just, 1970), and

identification of TH-response gene regulation cascades (Brown et al.,

1995, 1996; Brown et al., 2005; Buckbinder & Brown, 1992; Shi &

Brown, 1990; Wang & Brown, 1993). Since these discoveries, the

genome sequence, genetic methods (in vivo gene transfer, transgenesis,

gene knockout) have been added to the intrinsic benefits of frog biol-

ogy (Buchholz, 2012; Grant et al., 2015; Hellsten et al., 2010; Ishibashi

et al., 2012; Session et al., 2016; Tandon et al., 2016). Elucidating the

complexity of TH signaling at molecular and organismal levels will con-

tinue to require exemplary animal models, such as frog development,

with its inherent biological advantages and continued development of

experimental and bioinformatics tools. Potential application of funda-

mental discoveries in the treatment of disease and effects of endocrine

disrupting chemicals can also be tested using the in vivo frog model.

The frog system has been and will be a full-service model at the fore-

front in the study of TH-dependent development. Another century of

discovery awaits as we utilize the amazingly dramatic frog metamor-

phosis model to study in vivo mechanisms of TH signaling during

development.
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