Cytomegalovirus Restructures Lipid Rafts via a US28/CDC42-Mediated Pathway, Enhancing Cholesterol Efflux from Host Cells

Hann Low,1 Nigora Mukhamedova,1 Huanhuan L. Cui,1,2 Brian P. McSharry,3 Selmir Avdic,3 Anh Hoang,1 Michael Ditiatkovski,1 Yingying Liu,1 Ying Fu,1 Peter J. Meikle,1 Martin Blomberg,1 Konstantinos A. Polyzos,2 William E. Miller,4 Piotr Religa,2 Michael Bukrinsky,5 Cecilia Soderberg-Naucler,2 Barry Slobedman,3 and Dmitri Sviridov1,*

1Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
2Department of Medicine, Karolinska Institute, Stockholm 171 76, Sweden
3Discipline of Infectious Diseases and Immunology, University of Sydney, NSW 2006, Australia
4Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
5GW School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
*Correspondence: dmitri.sviridov@bakeridi.edu.au
http://dx.doi.org/10.1016/j.celrep.2016.05.070

SUMMARY
Cytomegalovirus (HCMV) contains cholesterol, but how HCMV interacts with host cholesterol metabolism is unknown. We found that, in human fibroblasts, HCMV infection increased the efflux of cellular cholesterol, despite reducing the abundance of ABCA1. Mechanistically, viral protein US28 was acting through CDC42, rearranging actin microfilaments, causing association of actin with lipid rafts, and leading to a dramatic change in the abundance and/or structure of lipid rafts. These changes displaced ABCA1 from the cell surface but created new binding sites for apolipoprotein A-I, resulting in enhanced cholesterol efflux. The changes also reduced the inflammatory response in macrophages. HCMV infection modified the host lipid profile and expression of several genes and microRNAs involved in cholesterol metabolism. In mice, murine CMV infection elevated plasma triglycerides but did not affect the level and functionality of high-density lipoprotein. Thus, HCMV, through its protein US28, reorganizes lipid rafts and disturbs cell cholesterol metabolism.

INTRODUCTION
Cytomegalovirus (HCMV) infection is one of the most prevalent viral infections in humans, with up to 75% of the population carrying the virus. In its latent form, HCMV infection is thought to be largely asymptomatic, with only a few viral transcripts expressed. However, when reactivated, HCMV may cause severe disease in immunocompromised individuals. Acute HCMV infection affects many tissues, including viral effects on the vascular endothelium, leading to vascular dysfunction, bleeding, and thrombosis. Whether latent HCMV infection contributes to any morbidity or not is unclear and, considering the high prevalence of the infection, a causative relationship is difficult to ascertain by traditional epidemiological methods. A number of previous studies have suggested that latent HCMV infection contributes to the risk of atherothrombosis (Zhu et al., 1999) and cancer (Söderberg-Nauclér et al., 2013). Given that cellular and systemic cholesterol metabolism plays a central role in the pathogenesis of atherosclerosis and was implicated in the pathogenesis of several malignancies (Zhuang et al., 2005), it is possible that a connection between HCMV infection and associated diseases involves an interaction between HCMV and host cholesterol metabolism.

Pathogens of different taxa interact with host cholesterol metabolism (Sviridov and Bukrinsky, 2014). A common purpose of this interaction is, on the one hand, to facilitate formation of plasma membrane lipid rafts or intracellular raft-like membrane structures, which are used by pathogens as entry gates, assembly platforms, and budding sites and require the presence of abundant cholesterol. On the other hand, many pathogens disrupt or modify rafts in order to reduce exposure to the immune system, which interacts with infected cells via rafts (Triantafilou et al., 2002). HCMV is an enveloped virus, and its virions contain host-derived cholesterol (Gudleski-O’Regan et al., 2012), but very little is known about the interaction of HCMV with host cholesterol metabolism. Infection of endothelial and epithelial cells and macrophages by HCMV requires receptor-mediated endocytosis, a process that is dependent on cholesterol (Haspot et al., 2012; Ryckman et al., 2006), and inhibition of cholesterol biosynthesis in human endothelial cells restrained HCMV replication (Potena et al., 2004). HCMV infection was associated with increased expression of low-density lipoprotein-related protein (LRP1); silencing of LRP1 concomitantly increased cellular cholesterol content and cholesterol content, as well as the yield and infectivity of the virus (Gudleski-O’Regan et al., 2012). HCMV-infected cells also have reduced abundance of ABCA1, a key transporter in the cholesterol efflux pathway.
HCMV Infection Enhances Cholesterol Efflux

To investigate the effect of HCMV infection on cholesterol efflux, human fibroblasts were infected with HCMV strain Toledo at an MOI of 1, and their ability to release cholesterol to lipid-free apolipoprotein A-I (apoA-I) was tested at 24 and 48 hr post-infection. The duration of the efflux incubation (2 hr) was on a proportional part of the time-dependence curve, and the concentration of apoA-I (30 μg/ml) was close to saturation, ensuring that the concentration of the acceptor was not rate limiting. Labeling of cells with cholesterol (i.e., specific radioactivity of cholesterol) was not affected by the infection (data not shown). Figure 1A shows that HCMV infection enhanced the rate of specific cholesterol efflux by 4-fold and 2-fold after 24 and 48 hr, respectively. Non-specific efflux (i.e., the efflux in the absence of an acceptor) was unaffected by 4-fold and 2-fold after 24 and 48 hr, respectively. Non-specific efflux (i.e., the efflux in the absence of an acceptor) was unaffected by the infection (data not shown).

Cholesterol efflux to lipid-free apoA-I is solely determined by the activity of the ABCA1 transporter. Therefore, we investigated two other acceptors: isolated high-density lipoprotein (HDL), an acceptor using ABCG1- and SR-B1-dependent pathways; and methyl-β-cyclodextrin (MβCD), a non-specific acceptor of cholesterol. Both acceptors were used in saturating concentrations. Figure 1B shows that, after 48 hr of infection, efflux to both apoA-I and HDL was significantly enhanced, while the efflux to MβCD was unaffected. To further confirm that the effect of HCMV infection is an active and specific process and is not related to passive diffusion of cholesterol, we tested the efflux of cholesterol from cells fixed with paraformaldehyde prior to the efflux incubation. While the efflux from live cells to apoA-I was enhanced 4-fold and 2-fold after 24 and 48 hr, respectively. Non-specific efflux (i.e., the efflux in the absence of an acceptor) was unaffected by the infection (data not shown).

Increased cholesterol efflux to apoA-I is usually a result of increased abundance of total and/or cell-surface ABCA1. However, when we examined the abundance of ABCA1 in cells infected with HCMV, unexpectedly, we found that it was reduced (Figure 2A). The densitometry of bands showed that the ABCA1/GAPDH ratio was 0.7 ± 0.08 versus 0.4 ± 0.07 (mean ± SD) for uninfected versus infected cells, respectively (p < 0.003, n = 4). Furthermore, the abundance of cell-surface ABCA1 was also reduced in infected cells (Figure 2A). The abundance of two other transporters responsible for the efflux to HDL, ABCG1 and SR-B1, was unaffected by the infection (Figure 2B), despite increased efflux to HDL in infected cells (Figure 1B). We then stimulated the expression of ABCA1 and ABCG1 by treating cells with the LXR agonist TO901317. As expected, this treatment increased the rate of cholesterol efflux in both infected and uninfected cells; however, the efflux from HCMV-infected cells was higher at both conditions, and the absolute difference between cholesterol efflux from infected and uninfected cells was similar in cells treated or not treated with the LXR agonist (Figure 2C). When ABCA1 abundance was reduced by approximately 80% after transfecting cells with small interfering RNA (siRNA)ABC1 (Figure 2D, inset), the efflux from uninfected cells was significantly reduced, while the efflux from infected cells was unaffected by ABCA1 silencing (Figure 2D). The pathway of ABCA1-dependent cholesterol efflux also involves the efflux of phospholipids, either simultaneously or prior to the efflux of cholesterol (Vedhachalam et al., 2007). When we tested the effect of HCMV infection on phospholipid efflux, no changes were found (Figure 2E). Collectively, these findings suggest that the increase of cholesterol efflux after HCMV infection is not mediated by host ABCA1.

Involvement of HCMV Proteins

An alternative possibility explaining enhanced cholesterol efflux from cells infected with HCMV is that the virus introduces an additional virus-derived efflux pathway into the host cell. To test this possibility, we infected cells with HCMV inactivated by UV irradiation. UV irradiation does not affect the capacity of the virus to enter target cells but blocks viral gene transcription (Zhu et al., 1997). We found that UV inactivation of the virus completely abolished its capacity to stimulate cholesterol efflux (Figure 3A) and to reduce ABCA1 abundance (Figure 3B, lanes 1, 2, and 5). Similar effects on cholesterol efflux were demonstrated when the UV-inactivated Merlin HCMV strain was used (data not shown). To further confirm the requirement for active replication, we treated cells with a specific inhibitor of HCMV DNA polymerase, phosphonoacetic acid (PAA) (Stinski, 1977). Treatment with PAA had no effect on cholesterol efflux from uninfected cells but completely abolished the increase of cholesterol efflux seen in infected cells (Figure 3C).

HCMV is a complex virus; its genome contains more than 160 open reading frames (ORFs), and the functions of many of the products of these genes are not known. None of the HCMV proteins carries sequences homologous to known sterol-binding or sterol-sensing domains of mammalian proteins. The HCMV protein US28 is a 41-kDa G-protein-coupled receptor expressed at all stages of the infection and found in perinuclear endosomes and lipid rafts (Droese et al., 2004). It was previously implicated as potentially playing a role in the pathogenesis of atherosclerosis by altering smooth muscle cell migration (Streblow et al., 1999). We tested whether US28 may be also responsible for the viral effects on cholesterol efflux. We compared uninfected cells with cells infected with the Toledo strain, a ΔUS28 viral mutant based on the VR1814 strain and the parental VR1814
strain (+US28). While infection with both Toledo and +US28 viruses similarly increased cholesterol efflux, the ΔUS28 virus failed to do so (Figure 3D). When the effects on ABCA1 abundance were examined, again, the +US28 virus reduced abundance of ABCA1, while the ΔUS28 virus was less effective (Figure 3B, lanes 1–4). In a complementary set of experiments, we transiently overexpressed US28 tagged with turboGFP (tGFP) in the host cells in the absence of the virus (Figure 3E, inset). Overexpression of US28 resulted in an increase of the rate of cholesterol efflux, similar to the positive control, cells
overexpressing ABCA1 (Figure 3E). Furthermore, overexpression of US28 in HCMV(ΔUS28)-infected cells elevated cholesterol efflux even above that in cells infected with the parent HCMV(+US28) virus (Figure 3F). When the effect of US28 overexpression on ABCA1 abundance was examined, the total ABCA1 abundance was unchanged in US28-transfected cells (Figure 3G). The abundance of cell-surface ABCA1 was, however, lower in US28 versus mock-transfected cells (482 versus 662 arbitrary densitometry units [a.d.u.]), confirming that, in cells transfected with US28, ABCA1 is located in a compartment not exposed to the cell surface. A discrepancy between the effects of HCMV infection and US28 transfection on the total abundance of ABCA1 is likely a reflection of different amounts of US28 introduced by viral infection versus transfection or is temporal; however, we cannot exclude a possibility that US28 requires a co-factor for its effects on ABCA1.

Finally, overexpression of US28 in another cell type, mouse macrophage RAW 264.7 cells, also elevated cholesterol efflux
The effect of transient overexpression of tGFP-US28 on cholesterol efflux from RAW 264.7 cells.

In fluorescence microscopy, apoA-I is depicted in red, while Alexa Fluor 647 is shown as green). The left panel in Figure 4D shows a small amount of apoA-I (green dots) bound to mock-transfected cells. The middle panels show apoA-I bound to the surface of US28-transfected cells (red), not to the surface of untransfected cell (seen at bright-field picture on the right panel). Quantitation of the confocal images demonstrated that twice as much apoA-I binds to US28-transfected versus mock-transfected cells (Figure 4D, right panel).

We hypothesized that the mechanism of the effect of US28 on apoA-I binding could be a direct binding of apoA-I to US28 on the cell surface, leading to a translocation of plasma-membrane cholesterol to bound apoA-I. To test this hypothesis, we overexpressed tGFP-tagged US28 in human fibroblasts, incubated cells with human apoA-I, cross-linked with cell-impermeable cross-linker followed by immunoprecipitation with either anti-apoA-I or anti-tGFP antibody. Immunoprecipitation with both anti-tGFP and anti-apoA-I failed to detect a direct binding between US28 and apoA-I (Figure 4E).

Thus, it appears that HCMV protein US28 is essential and sufficient for the effects of HCMV on cholesterol efflux; it is also essential, but may not be sufficient, for the reduction of ABCA1 abundance in host cells.

Mechanism of the Effect of HCMV on Cholesterol Efflux

To investigate the mechanism of US28-dependent stimulation of cholesterol efflux, we tested the effect of US28 on apoA-I binding to host cells. Infection of cells with +US28 HCMV led to an almost 3-fold elevation of apoA-I binding to cells, compared to uninfected cells (Figure 4A). Infection of cells with US28-deficient HCMV virus led to a reduction of apoA-I binding, compared to cells infected with the +US28 virus (Figure 4A). Next, we tested the effect of overexpression of US28 on apoA-I binding. Transfection of cells with US28 more than doubled the binding of apoA-I, compared to mock-transfected cells, exceeding the effect of transfection with ABCA1 (Figure 4B). The effect of US28 on apoA-I binding was further confirmed with two independent methods. First, the amount of apoA-I bound to mock- or US28-transfected cells was analyzed by western blot. Representative images of western blots of cell-bound [Alexa Fluor 647]apoA-I are shown in Figure 4C. We found that transfection of US28 increased the apoA-I/GAPDH ratio by 1.38 (+ 0.045,- fold (n = 3) in US28- versus mock-transfected cells (p < 0.05). Second, we used live confocal microscopy to analyze the binding of [Alexa Fluor 647]apoA-I to mock- or US28-transfected cells. Findings are presented in Figure 4D (note that, for better visualization, colors were changed and tGFP is presented as red, while Alexa Fluor 647 is shown as green). The left panel in Figure 4D shows a small amount of apoA-I (green dots) bound to mock-transfected cells. The middle panels show apoA-I bound to the surface of US28-transfected cell (red) but not to the surface of untransfected cell (seen at bright-filed picture on the right panel). Quantitation of the confocal images demonstrated that twice as much apoA-I binds to US28-transfected versus mock-transfected cells (Figure 4D, right panel).

We hypothesized that the mechanism of the effect of US28 on apoA-I binding could be a direct binding of apoA-I to US28 on the cell surface, leading to a translocation of plasma-membrane cholesterol to bound apoA-I. To test this hypothesis, we overexpressed tGFP-tagged US28 in human fibroblasts, incubated cells with human apoA-I, cross-linked with cell-impermeable cross-linker followed by immunoprecipitation with either anti-apoA-I or anti-tGFP antibody. Immunoprecipitation with both anti-tGFP and anti-apoA-I failed to detect a direct binding between US28 and apoA-I (Figure 4E). At the same time, analysis of complexes immunoprecipitated with anti-apoA-I revealed ample binding of apoA-I to ABCA1 (Figure 4E, right panel). Thus, it appears unlikely that US28 closely associates with or directly binds to apoA-I. An alternative is that HCMV, through US28, alters the structure of plasma membrane, creating sites where apoA-I can bind and solubilize membrane lipids, a mechanism recently suggested for the ABCA1-dependent cholesterol efflux (Vednachalam et al., 2007).

The binding of apoA-I stimulates transfer of cholesterol to the plasma membrane and increases the abundance of cholesterol on the cell surface (Sviridov et al., 2001). Therefore, we tested whether HCMV infection alters the abundance of cholesterol on the surface of plasma membrane (defined as a proportion of cholesterol susceptible to oxidation by cholesterol oxidase). Both HCMV infection and overexpression of US28 significantly increased the abundance of cell-surface cholesterol (Figures 4F and 4G). This finding was further confirmed by analyzing the amount of BODIPY-cholesterol incorporated into cell membranes after pulse labeling of cells by incubating them for 10 min with BODIPY-cholesterol /cyclodextrin complex. The amount of BODIPY-cholesterol extracted from the plasma membranes of US28-transfected cells was twice that in the mock-transfected cells (Figure 4H, left panel), while the abundance of the membrane marker xNa+/K+ATPase (“loading control,” analyzed using western blot in samples from the same experiment) was slightly less (Figure 4H, middle panel). Enrichment of membranes with cholesterol usually leads to increased abundance of lipid rafts; therefore, we also analyzed the abundance in the membrane fraction of the raft marker flotillin. Unexpectedly, the abundance of flotillin in cells transfected with US28 decreased, compared to that in mock-transfected cells (Figure 4H, right panel), when normalized to loading control (Figure 4H, middle panel). Thus, HCMV and US28 increased the binding of apoA-I and abundance of cholesterol on the cell surface; both factors may contribute to the increased cholesterol efflux.

Lipid rafts are an important structural element of plasma membrane involved in regulation of cholesterol efflux and many other metabolic processes. Therefore, we further investigated the effect of US28 on the abundance of rafts using confocal microscopy. Flotillin and ganglioside GM1 (assessed through binding of cholera toxin subunit B [CT-B]) were used as raft markers, and the experiments were conducted in two modifications: in cell suspension, where the plasma membrane can be clearly
Figure 4. Mechanism of the Effect of HCMV on Cholesterol Efflux.

(A) The effect of HCMV(+US28) and HCMV(ΔUS28) (48-hr infection) on binding of apoA-I to human fibroblasts.

(B) The effect of overexpression of US28 or ABCA1 on apoA-I binding (2 hr) to human fibroblasts.

(legend continued on next page)
visualized, and in adherent cells, a more natural state for fibroblasts. In suspended fibroblasts transfected with mock-GFP plasmid, we found a high abundance of flotillin- and GM1-positive staining on the plasma membrane, consistent with a high abundance of rafts in these cells (Figure 5A). In cells transfected with US28-tGFP, two types of staining were observed. In some transfected cells, US28 was localized to the nucleus, cytoplasm, and plasma membrane; in these cells, we observed weaker staining with anti-flotillin antibody but clearly distinguishable staining of the plasma membrane with CT-B (Figure 5B). In other cells, US28 localized to the perinuclear space and nucleus; in these cells, no flotillin- or GM1-positive staining was observed on plasma membrane (Figure 5C). Quantitation of flotillin abundance derived from confocal microscopy experiments is shown in Figure 5D. Similar observations were made with adherent cells (Figure S1A). Two types of intracellular distribution of US28 were reported previously and are thought to reflect temporal regulation (Noriega et al., 2014). We further confirmed these findings in cells infected with +US28 and ΔUS28 HCMV. While, in uninfected cells, we observed an abundant and even staining of plasma membrane with anti-flotillin antibody and CT-B (Figure 5E), in cells infected with +US28 virus, the abundance of flotillin and GM1 was considerably reduced and became uneven (“clustered”) (Figure 5F). Abundance and distribution of raft markers in cells infected with ΔUS28 HCMV were similar to those in uninfected cells (Figure 5G), while infection with ΔUS28 virus combined with transfection with US28-tGFP again led to reduced abundance and clustering of lipid raft markers (Figure 5H; cells transfected with US28-tGFP are identified by tGFP fluorescence). Quantitation of flotillin abundance derived from confocal microscopy experiments is shown in Figure 5I. Similar observations were made with adherent cells (Figure S1B). Thus, HCMV infection and transfection with US28 reduced abundance of rafts and/or severely affected their properties, inducing clustering and exclusion of key lipid raft markers.

To understand a mechanism responsible for re-organization of lipid rafts by HCMV, we investigated the status of actin cytoskeleton in infected cells. Actin microfilaments are involved in maintaining the structure of rafts, including their clustering (Chichili and Rodgers, 2007), and are responsible for the alteration of raft structure by the influenza virus (Simpson-Holley et al., 2002). Indeed, actin cytoskeleton was altered in HCMV-infected cells showing considerable rearrangement; we also observed the co-localization of actin with GM1 in the sites of raft clustering (Figures 6A and 6B). Similar changes in actin cytoskeleton and increased co-localization of actin with GM1 was observed in US28-transfected cells when compared to mock-transfected cells (Figures 6C and 6D; note that the color of GFP was changed to blue to identify transfected cells).

US28 is known to initiate a signaling cascade, resulting in the activation of CDC42 (Melnychuk et al., 2004; Vischer et al., 2014), a small GTPase of the Rho family implicated in the regulation of actin polymerization (Chadda et al., 2007; Vischer et al., 2014). To test whether this mechanism is involved, we silenced CDC42 in human fibroblasts, using siRNA_{CDC42}. Silencing of CDC42 resulted in approximately 80% reduction of CDC42 abundance (Figure 6E). When the binding of [Alexa Fluor 647]apoA-I was tested in cells transfected with scrambled siRNA, as expected, co-transfection with US28 increased apoA-I binding (Figure 6F, lanes 1 and 2). When cells were transfected with siRNA_{CDC42}, the increase of apoA-I binding in US28-transfected cells was completely eliminated (Figure 6F, lanes 3 and 4). This finding was confirmed by measuring the effects of US28 on cholesterol efflux from cells after CDC42 silencing; silencing of CDC42 completely eliminated the increase of cholesterol efflux caused by US28 transfection (Figure 6G). Thus, a mechanism of the effects of HCMV on the structure of lipid rafts is through CDC42-mediated remodeling of actin cytoskeleton.

Effect of US28 on Inflammation

Changes in lipid rafts may lead to impairment of multiple signaling pathways, including inflammatory cytokine production. Therefore, we investigated possible physiological implications of the effects of US28 and tested whether overexpression of US28 affects elements of inflammation. Mouse macrophage RAW 264.7 cells were transfected either with mock plasmid or with US28, and cytokine secretion was analyzed. Transfection of cells with US28 significantly reduced unstimulated secretion of interleukin (IL)-6, IL-27, and interferon (IFN)-γ (Figure S2A). When cells were stimulated with lipopolysaccharide (LPS), secretion of IL-6, IL-27, and granulocyte/macrophage colony-stimulating factor (GM-CSF) was reduced in cells transfected with US28 (Figure 6H, solid bars). To assess the contribution of US28-mediated raft modifications to cytokine secretion, we compared the effects of transfecting cells with US28 with the effects of MjCD, which modifies rafts by extracting cholesterol and does not interact with known chemokine receptors. Treatment of cells with MjCD reduced the abundance of rafts (Figure S2B) and significantly reduced LPS-stimulated secretion of IL-6 and
Figure 5. The Effect of HCMV on Lipid Rafts
(A) The effect of transfection of fibroblasts with mock-GFP on the abundance of flotillin and GM1.
(B) The effect of transfection of fibroblasts with US28-tGFP on the abundance of flotillin and GM1 when US28 is distributed to cytoplasm.
(C) The effect of transfection of fibroblasts with US28-tGFP on the abundance of flotillin and GM1 when US28 is distributed to the nucleus.
(D) Quantitation of flotillin abundance derived from confocal microscopy experiments. CTCF, corrected total cell fluorescence. **p < 0.01; ***p < 0.001 (versus mock-GFP or as shown). Cyto., cytoplasm; Nucl., nucleus.
(E) Abundance and distribution of flotillin and GM1 in uninfected cells.
(F) The effect of infection of fibroblasts with HCMV(+US28) (48 hr) on the abundance and distribution of flotillin and GM1.

(legend continued on next page)
The effect of infection of fibroblasts with HCMV (Figure 6H). However, the effect of M1CD on LPS-stimulated secretion of IL-27 was opposite that of US28, indicating the possible contribution of chemokine scavenging and receptor hijacking, previously attributed to US28 (Vischer et al., 2014), to its anti-inflammatory properties. When conditioned medium from US28-transfected macrophages (not stimulated with LPS) was added to the endothelial cells carrying reporter gene under the control of VCAM-1 promoter, we observed a 25% reduction in the stimulatory effect on VCAM1 expression, when compared with medium from mock-transfected cells (Figure 6I).

Effect of HCMV Infection on Cellular Lipid Metabolism

Our findings imply that HCMV infection replaces the cell-specific ABCA1-dependent pathway of cholesterol efflux with a virus-specific US28-dependent cholesterol efflux. To elucidate the net effect of such substitution on lipid content, we performed lipidomic analysis of cells infected with HCMV. The findings are summarized in Figure 7A, with a full dataset presented in Table S1. The notable effects of HCMV infection on cellular lipids were small, but statistically significant, elevations of the abundance of ceramide, dihexosylceramide, and GM3 ganglioside. These lipids play an important role in maintaining the structure and functional properties of lipid rafts (Quinn, 2014). Total abundance of two other important components of rafts, cholesterol and sphingomyelin, were not affected by the infection; abundance of cholesteryl esters was also unaffected.

Cholesterol efflux is often non-productive: the release of cellular cholesterol to extracellular acceptor may be compensated by cholesterol uptake, with no net change in overall cellular cholesterol content. We further investigated this issue and measured two surrogate markers of cellular cholesterol content: rates of cholesterol biosynthesis and esterification. The rate of cholesterol biosynthesis in HCMV-infected (Figure 7B) or US28-transfected (Figure 7C) cells was slightly reduced, while the rate of cholesterol esterification was increased (Figures 7D and 7E) compared to that in uninfected cells. These findings are consistent with an increased, rather than decreased, abundance of cholesterol, at least in the regulatory pool in the endoplasmic reticulum. HCMV infection also caused a modest increase in the incorporation of [3H]acetate into free fatty acids (1.26 ± 0.04 versus 1.09 ± 0.08 dpm per milligram or cell protein; p < 0.05) and phospholipids (2.89 ± 0.16 versus 2.59 ± 0.08 dpm per milligram of cell protein; p < 0.05) and had no effect on triglyceride (TG) biosynthesis. When we measured the abundance of total cellular cholesterol and cholesteryl esters in cells transfected with US28, it was similar to that in mock-transfected cells (Figure 7F), analogous to the effect of HCMV infection. Thus, elevation of cholesterol efflux by HCMV infection or US28 transfection does not appear to be productive and did not lead to reduction of cholesterol content. It might, however, lead to a redistribution of cholesterol between cellular pools.

Next, we investigated the effect of HCMV infection on the expression of lipid metabolism-related genes in host cells. We found that the expression of MSR1, ABCA3, and ABCG1 was increased, while the expression of ABCA12 was reduced, and the expression of ABCA1 was unaffected (Figure S3A). Interestingly, the increase in the expression of ABCG1, ABCA3, and MSR1 in the infected cells was not translated into an increased abundance of these proteins (Figure 2B; Figure S3B).

Next, we investigated the effect of HCMV infection on the abundance of ten microRNAs (miRNAs) known to target ABCA1 and cholesterol efflux in various cells (for a review, see Canfrán-Duque et al., 2014). Abundance of two miRNAs, miR10b and miR106b, was significantly elevated in infected cells (Figure 7G), pointing to a possible mechanism of reduction of ABCA1 abundance in cells infected with HCMV. However, the abundance of two other miRNAs known to target ABCA1, miR145 and miR27a, was reduced by HCMV infection. Other miRNAs were unaffected. It must be noted that the abundance of the affected miRNAs was low, compared to that of the main mRNA regulator of ABCA1, miR33a (Figure S3C). The abundance of miR33a and miR33b was unaffected.

Animal Studies

Finally, we analyzed the effect of CMV infection on lipid metabolism in vivo using a murine model. BALB/c mice were infected intraperitoneally with 1.8 × 10⁶ plaque-forming units (PFUs) of murine CMV (MCMV). It should be noted that MCMV does not express US28 (Beisser et al., 2008). At 3 weeks post-infection, uninfected and infected animals were euthanized. Analysis of plasma lipoproteins (Figures S4A–S4D) revealed that MCMV infection caused modest elevation of total plasma cholesterol, which was mostly due to the elevation of non-HDL cholesterol. There was a significant elevation of plasma TG content; HDL cholesterol was unaffected. We also analyzed the capacity of mouse plasma to support cholesterol efflux from uninfected mouse macrophages (RAW 264.7). No effect was found (Figure S4E). Furthermore, we analyzed the effect of MCMV infection on the expression of genes related to cholesterol metabolism in the liver (Figure S4F). The livers of MCMV-infected animals had elevated expression of Abca3, similar to the in vitro findings with HCMV, and also of Hmgcr and Lxra. Next, we analyzed the abundance of Abca1 and Abcg1 in the liver (Figures S4G and S4H). There was a tendency for lower abundance of Abca1 in the liver of the infected animals, but the difference did not reach statistical significance. However, there was statistically significant elevation of the abundance of Abcg1 in the livers of the infected animals.

DISCUSSION

Very little is known about the role of cholesterol in the life cycle of HCMV; however, the presence of cholesterol in HCMV virions...
Figure 6. Mechanism and Consequences of the Effect of HCMV on Lipid Rafts

(A and B) The effect of infection of fibroblasts with HCMV on the abundance and co-localization of GM1 and β-actin. Scale bars, 20 μm.

(C and D) The effect of transfection of fibroblasts with US28 on the abundance and co-localization of GM1 and β-actin. Note that the color of tGFP was changed to blue to identify transfected cells. Scale bars, 20 μm.

(legend continued on next page)
suggestions a possible interaction of the virus with cellular cholesterol metabolism. Given the important role that such interaction plays in the pathogenesis of many viral infections (Sviridov and Bukrinsky, 2014), we comprehensively investigated the interaction between HCMV infection and host cholesterol metabolism in vitro and in vivo.

The main finding of this study is that HCMV restructures lipid rafts in the host cells, causing increased cholesterol efflux and, at the same time, reducing abundance of a key transporter in the host cholesterol efflux pathway, ABCA1. The viral protein responsible for this effect is US28. Mechanistically, the following sequence of events is proposed (Figure S5): (1) US28 is acting as chemokine receptor and activates CDC42; (2) activation of CDC42 leads to rearrangement of actin microfilaments, including tight association of actin with rafts; (3) remodeling of actin affects abundance and/or structure of lipid rafts, causing raft clustering; (4) changes in lipid rafts lead to creation of plasma membrane regions that are capable of binding apoA-I and releasing cholesterol (this also leads to displacement of ABCA1 from the cell surface); (5) increased binding of apoA-I causes redistribution of intracellular cholesterol to the plasma membrane; (6) elevated binding of apoA-I and an increased amount of accessible cholesterol enhanced cholesterol efflux. Our findings are consistent with the hypothesis that US28 causes a re-distribution of cholesterol between cellular compartments, reorganizes lipid rafts, and increases the number of plasma membrane structures capable of binding apoA-I and releasing cholesterol. The current understanding of the mechanism of cholesterol efflux is that ABCA1 changes properties of the plasma membrane domains, forming apoA-I binding sites leading to the efflux (Vedhachalam et al., 2007). It appears that US28 induces similar changes to the plasma membrane without ABCA1.

US28 is a virus-encoded G-protein-coupled receptor; it is expressed in both acute and latent infection (Vischer et al., 2007) and is found in primate CMVs (Beisser et al., 2006). US28 affects multiple signaling pathways; it is dispensable for viral replication, but it plays a key role in immune evasion as well as in inflammatory and proliferative responses of the infected cells ensuring persistence of the infection (for a review, see Beisser et al., 2008; Vischer et al., 2007, 2014). US28 was also implicated in the pathogenesis of atherosclerosis, mainly through the effects on inflammation and migration of smooth muscle cells and macrophages (Streblow et al., 1999; Vischer et al., 2014). Findings of this study may provide a mechanistic explanation for the effects of US28 on inflammatory and proliferative signaling pathways originating from lipid rafts. Dysregulation of cellular cholesterol metabolism inflicted by US28 may contribute to the pathogenesis of atherosclerosis through changes in abundance and/or properties of cholesterol-rich plasma membrane domains, rafts, and caveolae (Murphy et al., 2009).

Our findings raise the following question: given that expression of US28 is not essential for HCMV replication (Vischer et al., 2007), what advantage is gained by HCMV from enhancing cholesterol efflux, apparently with no net effect on cellular cholesterol content? We propose that this effect is related to the dramatic changes in the abundance and properties of lipid rafts. Lipid rafts are essential for many intracellular pathogens. On the one hand, many viruses use host plasma membrane rafts as an assembly platform, entry gate, or binding sites during cell-to-cell transmission (Sviridov and Bukrinsky, 2014); this requires an increased abundance of rafts. It is not currently known how and whether HCMV interacts with rafts at different stages of its life cycle. Juckem et al. (2008) suggested that cholesterol depletion and disruption of lipid rafts result in a block of HCMV infection of fibroblasts. Infection of this cell type takes place by fusion of the virus envelope with the plasma membrane, but whether rafts are also essential for entry into other cell types is unknown. On the other hand, rafts are a structural platform for innate immune response (Fessler and Parks, 2011), and pathogens often target rafts to reduce immune-related signaling originating from rafts and exposure of infection-related factors to the immune system; this requires a reduced abundance of rafts. To accommodate these two seemingly contradictory requirements, pathogens modify rafts. Often, they do so by modifying lipid fluxes (Sviridov and Bukrinsky, 2014), as even small changes in lipid flux affect raft structural properties, severely impairing signaling from Toll-like receptors (TLRs) (Fessler and Parks, 2011). A frequent form of raft modification is clustering, when rafts converted into more stable and larger structures (Sviridov and Bukrinsky, 2014). We propose that HCMV, through the suggested mechanism, changes structural and functional properties of lipid rafts, enhancing cholesterol efflux and impairing innate immune responses. This suggestion is supported by our finding that transfection of mouse macrophage cells with US28 reduced secretion of several cytokines measured both directly and by a functional assay assessing the effects of secreted cytokines on VCAM1 expression in endothelial cells. It is also consistent with the ability of HCMV to inhibit IFN-α-stimulated responses, which are known to rely on intact rafts (Miller et al., 1999). Furthermore, we also found elevated levels of ceramide in HCMV-infected cells; enrichment of rafts with ceramide is known to be associated with altered transmembrane signaling and formation of larger domains (Cremesti et al., 2002). However, the suggestion of a physiological role of US28 as a modulator of innate immunity remains speculative and needs to be tested in an animal model—a complex task, given that only primate

(E) Western blot of CDC42 with and without siRNA silencing, MW, molecular weight.
(F) Western blot of [Alexa Fluor 647]apoA-I bound to cells transfected with: mock plasmid and siRNAa (line 1), US28 and siRNAa (line 2), mock plasmid and siRNACDC42 (line 3), or US28 and siRNACDC42 (line 4).
(G) Cholesterol efflux to apoA-I (30 μg/ml) from cells transfected with various combinations of mock and US28 plasmids, siRNAa, and siRNACDC42.
(H) The effects of transfection with US28 or treatment with methyl-β-cyclodextrin (MβCD) on cytokine secretion from RAW 264.7 macrophages after stimulation with LPS. Ratios of LPS-stimulated changes in US28 transfected versus mock-transfected cells (filled bars) or MβCD-treated versus untreated cells (dashed bars) are shown (means ± SD, n = 4).
(i) The effect of conditioned medium from RAW 264.7 cells transfected with US28 on VCAM1 expression in mouse endothelial cells.

Data indicate means ± SD. *p < 0.05; **p < 0.01; ***p < 0.001 (versus mock-transfected cells); ****p < 0.001 (versus untreated cells). See also Figure S2.
Figure 7. The Effect of HCMV Infection on Host Lipid Metabolism

(A) The effects of HCMV infection (48 hr) on abundance of cellular lipids (standardized to PC). LPC(O), alkyllysophosphatidylcholine; PG, phosphatidylglycerol; LPE, lysophosphatidylethanolamine; LPI, lysophosphatidylinositol; LPC, lysophosphatidylcholine; DHC, dihexosylceramide; PE(O), alkylphosphatidylethanolamine; Cer, ceramide; THC, trihexosylceramide; MHC, monohexosylceramide; PE(P), alkenylphosphatidylethanolamine; PC(P), alkenylphosphatidylcholine; PC(O), alkylphosphatidylcholine; GM3, Gg2 ganglioside; CE, cholesterol ester; SM, sphingomyelin; PS, phosphatidylserine; PI, phosphatidylinositol; PE, phosphatidylethanolamine; Chol, cholesterol. **p < 0.01 compared to Mock; ***p < 0.001 compared to Mock. (legend continued on next page)
CMVs contain US28. The effects of US28 on host cholesterol metabolism may also be related to a known capacity of HCMV to facilitate co-infection with other viruses, including HIV, which also critically depends on rafts and suppression of ABCA1 for their infectivity (Cui et al., 2012). While our findings are consistent with these hypotheses, critical evidence to support them beyond speculation awaits further experiments.

In a mouse model, MCMV infection did not affect liver abundance of Abca1, while slightly increasing plasma TG and non-HDL cholesterol content. Animal models, however, have limitations in reproducing properties of HCMV infection. Specifically, MCMV does not have a gene for US28, and its chemokine receptor functions are fulfilled by M33 (Beisser et al., 2008); the two proteins have limited homology (64%), and M33 may not share US28 functionality in modifying host cholesterol metabolism.

In conclusion, HCMV, through its protein US28, modifies plasma membrane rafts and enhances cholesterol efflux from infected cells. Given the role of cholesterol and lipid rafts in cell metabolism and immunity, the findings of this study may have significant implications on understanding of the pathogenesis of HCMV infection and its complications and may also identify therapeutic targets for treating HCMV infection.

EXPERIMENTAL PROCEDURES

Detailed methodology is provided as Supplemental Experimental Procedures.

Virus and Cells

The low-passage Toledo strain of HCMV was used unless indicated otherwise. When indicated, HCMV strain VR1814 was used as the basis for deletion of the US28 open reading frame. A clinical strain of HCMV (Merlin) was used in the experiments described in Figure 1F.

Human foreskin fibroblast cells (HFFs) were used in the experiment described in this study, unless indicated otherwise. HFFs were infected with HCMV at an MOI of 1. Unless indicated otherwise, the experiments were conducted 48 hr after infection. In the experiments described in Figures 3H, 6H, and S2, RAW 264.7 mouse macrophages were used.

Cholesterol and Phospholipid Efflux

Cholesterol or phospholipids were labeled by incubation with 1 μCi of [3H]cholesterol or [3H]choline, respectively, and cells were equilibrated and incubated for 2 hr with either human apoA-I (30 μg/ml) or isolated human HDL (40 μg/ml) or methyl-β-cyclodextrin (200 μg/ml). Efflux was expressed as a percentage of cholesterol moved from cell to medium.

Other Techniques

Cell-surface ABCA1 was assessed after biotinylation of cell-surface proteins (Cui et al., 2012). Lipid biosynthesis was assessed by the incorporation of [3H]acetate into cholesterol, free fatty acids, and TGs and phospholipids and by the incorporation of [14C]oleic acid into cholesteryl esters.

Abundance of cell-surface cholesterol on the plasma membrane was assessed through susceptibility to cholesterol oxidase, as described previously (Cui et al., 2012). Alternatively, cells were labeled with BODIPY-cholesterol/methyl-β-cyclodextrin inclusion complex (0.17 mg/ml) at 37°C for 10 min, and membranes were isolated as described previously (Cui et al., 2012). Lipids were extracted from the membrane pellet, and cholesterol was separated using TLC.

The abundance of lipid rafts was assessed using the Vybrant Lipid Rafts Labeling Kit (Life Technologies).

Concentrations of cytokines were determined using the LEGENDplex Multi-Analyte Flow Assay Kit (BioLegend). SVEC4/VCAM-1 cells were used to assess the effect of secreted cytokines on VCAM-1 expression (D’Souza et al., 2010).

MCMV Infection of Mice

Animal experiments were carried out in accordance with the Declaration of Helsinki; the experimental protocol was approved by the ethical committee of Warsaw Medical University (#93/2013). BALB/c mice were infected intraperitoneally with 1.8 × 10^6 PFU of MCMV (Smith strain); plasma and liver samples were collected 3 weeks post-infection.

Statistics

All data are shown as means ± SD, unless stated otherwise. Statistical significance of the differences was assessed by Student’s t test when data followed normal distribution or Mann-Whitney U test on ranks.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, five figures, and one table and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2016.05.070.

AUTHOR CONTRIBUTIONS

D.S. conceived the idea of the study, planned the experiments, oversaw the study, and wrote the bulk of the paper. H.L., H.L.C., N.M., A.H., M.D., Y.F., Y.L., and M. Blomberg performed the majority of the experiments. B.P.M. and S.A. generated and supplied HCMV. P.J.M. performed lipidomic analysis. P.P. and K.A.P. performed animal experiments. W.E.M. supplied ∆US28 HCMV. C.S.-N., B.S., M. Bukrinsky, N.M., H.L., and H.L.C. participated in designing the study and critically revised the manuscript.

ACKNOWLEDGMENTS

This study was supported by grants from the National Health and Medical Research Council of Australia (GNT1019847, GNT1036352) and the NIH (5HL093818) to D.S. and M.B. and, in part, by the Victorian Government’s OIS Program. We acknowledge the assistance of Monash Micro Imaging at the Alfred Medical Research and Education Precinct.

Received: January 7, 2016

Revised: April 7, 2016

Accepted: May 17, 2016

Published: June 16, 2016

(B) The effect of HCMV infection (48 hr) on the incorporation of [3H]acetate into cholesterol.

(C) The effect of transfection with US28 on the incorporation of [3H]acetate into cholesterol.

(D) The effect of HCMV infection (48 hr) on the incorporation of [14C]oleic acid into cholesteryl esters.

(F) The effect of transfection of cells with US28 on the abundance of total cholesterol and cholesteryl esters.

(G) The effect of HCMV infection (48 hr) on the abundance of selected miRNAs related to cholesterol metabolism.

Data indicate means ± SD. *p < 0.05; **p < 0.01; ***p < 0.001, versus control (Student’s t test). #p < 0.05; ##p < 0.01, versus control (corrected for multiple comparisons using the Benjamini-Hochberg method). See also Figure S3 and Table S1.
REFERENCES

