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In this paper, we establish continuous Gaussian limits for stochastic processes associated
to linear combinations of partial sums. The underlying sequence of random variables is
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1. Introduction

In recent years the approximation of a partial sum of a stationary process by a
martingale with stationary differences was extensively studied. Papers by Dedecker,
Merlevède and Volný [4], Zhao and Woodroofe [12], Gordin and Peligrad [7] and
Peligrad [11], deal with necessary and sufficient conditions for the validity of a
martingale approximation.

Many of these characterizations are strong enough for transporting from the
martingale to the partial sums of a stationary sequence the central limit theorem,
but fail to transport the central limit theorem in its functional form. In this paper,
we show that an additional averaging of partial sums of a stationary sequence is
useful in this respect. This modification allows us to obtain the weak convergence
to a continuous Gaussian processes that we shall characterize via its covariance
structure.

The result is easily applicable to stationary Markov chains with normal oper-
ators under a mild spectral condition that originates in the paper by Gordin and
Lifshitz [6]. A simple example of normal Markov chain is a random walk on a
compact group.
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The paper is organized as follows. In Sec. 2, we give the definitions and for-
mulate our results. In Sec. 3, we present an application to random walks on a
compact group. Section 4 contains the proofs of theorems. The Appendix contains
a generalized Toeplitz lemma.

2. Definitions and Results

2.1. Notations

We assume that (ξn)n∈Z denotes a stationary and ergodic Markov chain defined on
a probability space (Ω,F , P) with values in a measurable space (S,A). The marginal
distribution is denoted by π(A) = P (ξ0 ∈ A) and we assume that there is a regular
conditional distribution for ξ1 given ξ0 denoted by Q(x, A) = P(ξ1 ∈ A| ξ0 = x).
Next let L

2
0(π) be the set of functions on S such that

∫
f2dπ < ∞ and

∫
fdπ = 0, and

for a f ∈ L
2
0(π) let Xi = f(ξi), Sn =

∑n
i=1 Xi. Denote by Fk the σ-field generated

by ξi with i ≤ k. For any integrable variable X we denote Ek(X) = E(X |Fk).
In our notation E0(X1) = (Qf)(ξ0) = E(X1|ξ0). We denote by ‖X‖2 the norm in
L

2
0(Ω,F , P) and also ‖f(ξ0)‖2 = ‖f‖2, where the second notation stands for the

norm in L
2
0(π).

In addition, Q denotes the operator on L2(π) acting via (Qf)(x) =∫
S f(s)Q(x, ds).

Notice that any stationary sequence (Xk)k∈Z can be viewed as a function of a
Markov process ξk = (Xi; i ≤ k), for the function g(ξk) = Xk.

The Markov chain is called normal if QQ∗ = Q∗Q on L
2(π). Then for every f

in L
2(π) we denote by ρf the spectral measure of f with respect to Q on the closed

unit disk that is uniquely determined by the relation∫
S

(Qnf)(Qmf)dπ =
∫

D

zmz̄nρf (dz) with n, m ≥ 0.

2.2. Results

We say that (Xn)n∈Z admits a martingale approximation in L2 if there is a martin-
gale (Mn)n≥1 with stationary differences (Dn)n∈Z adapted to the filtration (Fn)n∈Z

such that
1
n

E(Sn − Mn)2 −→ 0, (1)

where Sn =
∑n

i=1 Xn. If such an approximation exists it follows that the martingale
is unique.

Relevant to our paper is the following characterization. According to
Peligrad [11] representation (1) holds if and only if

lim
n→∞

1
n

n∑
l=1

[E0(Sl) − E−1(Sl)] = D0 in L2 and

(2)
lim

n→∞ E(S2
n)/n = E(D2

0) = σ2.
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The approximation of type (1) is especially important for proving the central
limit theorem. If the stationary sequence is ergodic, the martingale construction
implies that the martingale differences are also stationary and ergodic and then,
the limiting distribution of Sn/

√
n is centered normal with the variance E(D2

0).
To go further, let us introduce the notation [x] as being the integer part of x

and for 0 ≤ t ≤ 1 define

Wn(t) =
S[nt]√

n
.

Wn(t) belongs to the space D[0, 1] of functions continuous from the right and hav-
ing limits from the left that we endow with the uniform topology. An important
problem with rich statistical applications is to study the convergence of Wn(t) to
the standard Brownian motion. A natural question is to investigate the limiting
behavior of Wn(t) for processes satisfying (1). In Proposition 4 of [4], an exam-
ple was constructed showing that there are stationary sequences satisfying (2) and
therefore (1) such that Wn(t) is not tight in D[0, 1] endowed with the uniform
topology. As a consequence, the convergence to a continuous process does not hold.

We shall see in this paper that continuous limits can be obtained for certain
linear stochastic processes associated to partial sums.

For 0 ≤ α < 1 and a stochastic process X = (Xi) denote by

Wα
n (t) = Wα

n (t,X) =
1

n3/2−α

[nt ]∑
i=1

Si

iα
. (3)

Further, we denote by Zα(t) a continuous Gaussian process with the covariance
structure (s ≤ t)

s2−α

(1 − α)(2 − α)

[
t1−α − 1

3 − 2α
s1−α

]
. (4)

Our first result is a general statement.

Theorem 1. Assume (1) holds. Then, for any 0 ≤ α < 1

Wα
n (t) =⇒ |σ|Zα(t),

where σ2 is defined by (2) and ⇒ denotes the weak convergence on D[0, 1] endowed
with the uniform topology.

By using this theorem, we study the additive functionals of a Markov chain
with normal operator. As a corollary we obtain the following functional central
limit theorem.

Theorem 2. Assume (ξn)n∈Z is a stationary ergodic Markov chain with Q normal
and f ∈ L

2
0(π) satisfies ∫

D

1
|1 − z|ρf (dz ) < ∞. (5)
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Then the representation (1) holds and for any 0 ≤ α < 1

Wα
n (t) =⇒ |σ|Zα(t).

We mention that the proof of the fact that (5) implies representation (1) can be
found in Chap. 4, Sec. 7 of [2]. This chapter was written by Gordin and Lifshitz.

Denote by

Vn(f) = (I + Q + · · · + Qn)(f) (6)

and then, with this notation, we have

‖E0(Sn)‖2
2 = ‖Vn(f)‖2

2.

By Cuny [3, Lemma 2.1] an equivalent form of the condition (5) is
∑

n

‖Vn(f)‖2
2

n2
< ∞. (7)

3. Application to Random Walks on Compact Groups

In this section, we shall apply our result to random walks on compact groups.
Let X be a compact abelian group, A a σ-algebra of Borel subsets of X and

π the normalized Haar measure on X . The group operation is denoted by +. Let
ν be a probability measure on (X ,A). The random walk on X defined by ν is the
Markov chain having the transition function

(x, A) −→ Q(x, A) = ν(A − x).

The corresponding Markov operator, denoted also by Q, is defined by

(Qf )(x) =
∫
X

f(x + y)Q(dy).

In this context,

(Q∗f)(x) = f ∗ ν∗(x) =
∫
X

f(x − y)ν(dy),

where ν∗ is the image of ν by the map x → −x. Then Q is a normal operator on L
2
π .

The dual group of X , denoted by X̂ , is discrete. Denote by ν̂ the Fourier transform
of the measure ν, that is the function

g −→ ν̂(g) =
∫
X

g(x)ν(dx ) with g ∈ X̂ .

A function f ∈ L
2(π) has the Fourier expansion

f =
∑
g∈X̂

f̂(g)g.

Ergodicity of Q is equivalent to ν̂(g) 
= 1 for any non-identity g ∈ X̂ . By arguments
in Borodin and Ibragimov [2, Chap. 4, Sec. 9] and also Derriennic and Lin [5, Sec. 8]
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condition (5) takes the form
∑
g∈X̂

|f̂(g)|2
|1 − Q̂(g)| < ∞. (8)

Combining these considerations with our theorems, we obtain the following
result:

Corollary 3. Let Q be ergodic on X . If for f in L
2
0(π) condition (8) is satisfied

then the conclusion of Theorem 2 holds.

4. Proofs

We establish first the validity of Theorem 1 for martingales.

Proposition 4. Let (Mi)i∈Z be a martingale with stationary and ergodic differences
(Di)i∈Z on (Ω,F , P) adapted to an increasing filtration of sub-sigma algebras of F ,

(Fi)i∈Z. Assume E(D2
0) = 1 and let 0 ≤ α < 1. Then Wα

n (t,D) defined by (3)
converges weakly to Zα(t), where Zα(t) is a continuous Gaussian process with the
covariance structure (4).

Proof. The proof involves several steps and is based on Theorem 13.5 of [1]. We
shall rewrite the process as a linear process with simplified coefficients. The coeffi-
cients will be continuous functions of t. Next step is to establish tightness in D[0, 1]
for Wα

n (t,D) followed by the convergence of finite dimensional distributions to the
corresponding ones of Zα(t).

(1) Asymptotic equivalence

For 0 ≤ s ≤ 1, we start by rewriting Wα
n (s) = Wα

n (s,D) as a linear process with
stationary and ergodic martingale innovations.

Wα
n (s) =

1
n3/2−α

[ns]∑
j=1

Mj

jα
=

1
n3/2−α

[ns]∑
i=1


 [ns]∑

j=i

1
jα


Di =

[ns]∑
i=1

cn,i(s)Di,

where

cn,i(s) =
1

n3/2−α

[ns]∑
j=i

1
jα

, 1 ≤ i ≤ [ns].

It is convenient to smooth the sequence of constants. We consider now the random
element

W ′
n(s) =

[ns]∑
i=1

c′n,i(s)Di,

where for 1 ≤ i ≤ [ns],

c′n,i(s) =
1

(1 − α)n3/2−α
((ns)1−α − i1−α) (9)
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and observe that by the stationarity of the martingale differences we have

sup
0≤s≤1

|Wα
n (s) − W ′

n(s)| ≤ 1
n3/2−α

n∑
i=1


 n∑

j=i

j−α − (j + 1)−α


 |Di|

≤ max1≤i≤n |Di|
n3/2−α

n∑
j=1

j−α

≤ max1≤i≤n |Di|
(1 − α)n1/2

−→ 0 a.s. and in L2.

Therefore by Theorem 3.1 in [1] we can analyze instead of the process Wα
n (s), the

process W ′
n(s).

(2) Tightness in D(0, 1)

Let 0 ≤ s < t ≤ 1. We estimate the second moment of an increment

E(W ′
n(t) − W ′

n(s))2 = E


 [nt]∑

i=1

c′n,i(t)Di −
[ns]∑
i=1

c′n,i(s)Di




2

≤ 2
[ns]∑
i=1

(c′n,i(t) − c′n,i(s))
2 + 2

[nt ]∑
i=[ns]+1

(c′n,i(t))
2 = I + II.

Since for a constant c = c(α)

I ≤ c(t1−α − s1−α)2

and

II ≤ c

n3/2−α

[nt ]∑
i=[ns]+1

((nt)1−α − i1−α)2 ≤ c(t1−α − s1−α)2,

by combining the estimates, we can find a constant c′ such that for all n ≥ 1

E(W ′
n(t) − W ′

n(s))2 ≤ c′(t1−α − s1−α)2.

Now by applying Theorem 11.6 in [9] with d(s, t) = |s1−α − t1−α| we conclude that
for each ε > 0 there is η > 0 such that

E sup
d(s,t)<η

|W ′
n(t) − W ′

n(s)| < ε,

and the tightness in D[0, 1] endowed with the uniform topology follows, since
d(s, t) ≤ |t − s|α.

(3) Estimation of the limiting covariances

For s ≤ t,

cov(W ′
n(s), W ′

n(t)) =
[ns]∑
i=1

c′n,i(s)c
′
n,i(t).
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By xn ∼ yn we understand that limn→∞ xn/yn = 1. By elementary calculus

cov(W ′
n(s), W ′

n(t)) ∼ s2−α

(1 − α)(2 − α)

(
t1−α − 1

(3 − 2α)
s1−α

)
as n −→ ∞

and then

var(W ′
n(t)) ∼ 2t3−2α

(2 − α)(3 − 2α)
as n −→ ∞.

(4) Convergence of the finite dimensional distributions

We establish now the convergence of finite dimensional distributions of W ′
n(t) to

the corresponding ones of Zα(t). It is convenient to extend the definition of the
coefficients cn,i(s) defined in (9) beyond the range 1 ≤ i ≤ [ns]. We define cn,i(s) = 0
for [ns] + 1 ≤ i ≤ n.

Let l be a fixed integer and let (λk)1≤k≤l be a vector of real numbers. We have
to study the limiting distribution of

l∑
k=1

λkW ′
n(tk) =

n∑
i=1

[
l∑

k=1

λkc′n,i(tk)

]
Di.

It is enough to show that the limit is Gaussian and the limiting covariance structure,
already determined at point 3 of the proof, is actually the covariance structure of
the limiting distribution.

We shall verify the conditions for the central limit theorem from Hall and
Heyde [8, Theorem 3.1] for the triangular array of martingale differences: ∆n,i =
[
∑l

k=1 λkc′n,i(tk)]Di.
First, we notice that by (9) we have for a certain positive constant K depending

only of α, k, and (λk)1≤k≤l

max
1≤i≤n

|∆n,i| ≤ K max
1≤i≤n

|Di|
n1/2

.

By taking into account the stationarity of (Di)i≥0 we obtain

max
1≤i≤n

|∆n,i| −→ 0 in L2. (10)

Then, we show that the sequence
∑n

i=1 ∆2
n,i converges almost surely and in L1.

Notice that

n∑
i=1

∆2
n,i =

n∑
i=1

l∑
k=1

λ2
k(c′n,i(tk))2D2

i

+ 2
n∑

i=1


 l−1∑

k=1

l∑
j=k+1

λkλjc
′
n,i(tk)c′n,i(tj)


D2

i .
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It is enough to show the existence and to compute the following limit, for all 0 ≤
s ≤ t ≤ 1:

lim
n→∞

[ns]∑
i=1

c′n,i(s)c
′
n,i(t)D

2
i .

We have

(1 − α)2c′n,i(s)c
′
n,i(t) =

(st)1−α

n
+

i2−2α

n3−2α
− s1−αi1−α

n2−α
− t1−αi1−α

n2−α
.

By the ergodic theorem we know that

1
n

[ns]∑
i=1

D2
i −→ s a.s. and in L1.

By Lemma A and via Remark A in the Appendix, applied first with ci = i2−2α and
then with ci = i1−α we obtain

1
n3−2α

[ns]∑
i=1

i2−2αD2
i −→ s3−2α

3 − 2α
a.s. and in L1

and

1
n2−α

[ns]∑
i=1

i1−αD2
i −→ s2−α

2 − α
a.s. and in L1.

It follows that
∑n

i=1 ∆2
n,i converges almost surely and in L1 and the limiting distri-

bution of
∑l

k=1 λkW ′
n(tk) is therefore normal. In particular, for all 0 ≤ t ≤ 1 the lim-

iting distribution of W ′
n(t) is centered normal with variance 2t3−2α/(2−α)(3− 2α)

and in addition [W ′
n(t)]2 is uniformly integrable. It follows that the covariance struc-

ture determined at point 3 of the proof is indeed the covariance structure of the
limiting distribution.

Proof of Theorem 1. In order to prove Theorem 1 we use the estimate

∥∥∥ sup
0≤t≤1

|Wα
n (t,X) − Wα

n (t,D)|
∥∥∥

2
≤ 1

n3/2−α

n∑
k=1

‖Sk − Mk‖2

kα
.

We notice that (1) implies that

1
n2−2α

n∑
k=1

‖Sk − Mk‖2
2

k2α
−→ 0.

Then, by Cauchy–Schwarz inequality

n∑
k=1

‖Sk − Mk‖2

kα
≤

[
n

n∑
k=1

‖Sk − Mk‖2
2

k2α

]1/2

.
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Therefore ∥∥∥ sup
0≤t≤1

|Wα
n (t,X) − Wα

n (t,D)|
∥∥∥

2
−→ 0.

By Theorem 3.1 in [1], the process Wα
n (t,X) has the same limiting distribution as

Wα
n (t,D). Then, we just have to apply Proposition 4 which is valid for stationary

and ergodic martingale differences to obtain the result.

Appendix

We give here a generalized Toeplitz lemma. We did not find it in the literature so
we include it with a proof.

Lemma A. Assume (xi)i≥1 and (ci)i≥1 are sequences of real numbers such that

1
n

n∑
i=1

xi −→ L, ncn −→ ∞ and
c1 + · · · + cn

ncn
→ C < 1.

Then, ∑n
i=1 cixi∑n
i=1 ci

−→ L.

Proof. Denote

An =
1
n

n∑
i=1

xi.

It follows that xi = iAi − (i − 1)Ai−1 and by Abel summation,

n∑
i=1

cixi =
n∑

i=1

ci(iAi − (i − 1)Ai−1) = cnnAn +
n−1∑
i=1

(ci − ci+1)iAi.

Notice that
n−1∑
i=1

(ci+1 − ci)i = cn(n − 1) − (c1 + c2 + · · · + cn−1)

∼ (1 − C)cnn −→ ∞ as n −→ ∞.

By Toeplitz lemma ∑n−1
i=1 (ci − ci+1)iAi∑n−1

i=1 (ci+1 − ci)i
−→ −L as n −→ ∞.

So ∑n−1
i=1 (ci − ci+1)iAi

(1 − C)cnn
−→ −L as n −→ ∞.
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Therefore∑n
i=1 cixi

cnn
= An +

1
cnn

n−1∑
i=1

(ci − ci+1)iAi −→ L − (1 − C)L = CL

and the result follows.

Remark A. We notice that Lemma A is applicable for the sequences of constants
ci = i2−2α and ci = i1−α for some 0 ≤ α < 1.

Proof. By Riemann sum arguments

1 + i2−2α + · · · + n2−2α

n3−2α
−→ 1

3 − 2α
< 1

and

1 + i1−α + · · · + n1−α

n2−2α
−→ 1

2 − α
< 1.
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