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a b s t r a c t

To help delineate the transition in pattern and timing of glaciation between two contrasting regions,
Lahul to the south and Ladakh to the north, moraines in the Puga and Karzok valleys of Sanskrit in the
Transhimalaya of northern India were mapped and dated using cosmogenic 10Be. In Lahul, Late
Quaternary glaciation was extensive with total valley glacial systems being >100 km in extent, whereas
glaciation in Ladakh has been comparatively restricted, with glaciers advancing only w15 km from the
contemporary glaciers during the last 200 ka. In the Puga valley, glaciers advanced >15 km at w129 ka
and w10 km at w46 ka, w4.2 ka, and w0.6 ka. In the Karzok valley, glaciers advancedw1 km at w3.6 ka.
Boulder exposure ages from a large moraine complex in Karzok indicate a glacial advance at w80 ka of
w4 km from the present ice margin. The oldest moraine in Karzok is w311 ka, indicating that glaciers
advanced >10 km from the present ice margin during or before marine isotope stage 9. The glacial
chronology of the two valleys shows a lack of early Holocene glaciation and generally asynchronous
glaciation between them. Moraines in the Puga and Karzok valleys broadly correlate with previous
studies in the Zanskar Range but the paucity of data for many of the glacial stages across the Zanskar
region makes the correlations tentative. The lack of early Holocene glaciation in the Puga and Karzok
valleys is in stark contrast to many regions of the Himalaya, including Lahul, and the restricted glacial
extent in Zanskar is more similar to the style of glaciation in Ladakh. The similarity between the glacial
records in the Puga and Karzok study areas suggests that the transition to Lahul style glaciation is to the
south of the Karzok valley, showing that this geographical transition is abrupt.

� 2010 Elsevier Ltd and INQUA. All rights reserved.
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1. Introduction

The Himalayan-Tibetan orogen is Earth’s most glaciated realm,
outside of its polar regions. The orogen has been extensively glaci-
ated in the past, with Quaternary valley glacier systems extending
>100kmbeyond theirpresentpositions (Haeberli et al.,1989;Owen,
2009). This has resulted in impressive glacial landforms throughout
the region, recording details of past glaciation and environmental
change. Until recently, however, relatively few studies had estab-
lished quantitative glacial chronologies in the Himalayan-Tibetan
orogen. With the advent of surface exposure and luminescence
dating, numerous studies illustrate the complexity of the glacial
drick), ybseong@korea.ac.kr
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records. These studies are beginning to constrain the timing and
extent of glaciation throughout the region (e.g. Sharma and Owen,
1996, Owen et al., 1997; Sloan et al., 1998; Phillips et al., 2000;
Taylor and Mitchell, 2000; Owen et al., 2001; Owen et al., 2003;
Richard et al., 2004; Seonget al., 2007;Owenet al., 2008, Seonget al.,
2009).

Many of these glacial geologic studies are motivated by the
desire to understand the interplay of two major climate systems,
the south Asian monsoon and the mid-latitude westerlies (Benn
and Owen, 1998). Variations in the strength of these two systems
over time (Gasse et al., 1996; Bookhagen et al., 2005; Demske et al.,
2009) as well as climatic gradients due to climate change and
orographic effects has resulted in strong precipitation gradients
across the orogen. These precipitation gradients change over time
(Ives and Messerli, 1989; Owen and England, 1998), influencing
glaciation throughout the region. Owen et al. (2008), for example,
highlighted the contrast in the extent of glaciation across a stretch
transition in style and timing of Quaternary glaciation between the...,
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of northern Pakistan and northern India during the Lateglacial
(w16e14 ka), showing that in the Hunza Valley in northern
Pakistan, glaciers had only advanced a few kilometers from their
present positions, whereas in the Central Karakoram,w100 km the
east, glaciers formed an extensive valley glacier system that
extended >100 km from their present positions.

To further examine the record of these strong climatic gradients
and changes in the style and timing of glaciation, we focus on
a zone of climatic transition between the monsoon-influenced
Lahul Himalaya, which forms the high, southern margin of the
orogen and the semi-arid continental interior of the Transhimalaya
and spans the northeast margin of Lahul, Zanskar, and Ladakh in
northern India (Fig.1). To examine the records of timing and style of
glaciation in the region, we utilize previous studies in Lahul, Zan-
skar, and Ladakh that employed optically stimulated luminescence
(OSL) and 10Be terrestrial cosmogenic nuclide (TCN) surface expo-
sure dating methods; these studies reveal markedly different
patterns of glaciation through time between Lahul and the Tran-
shimalaya (Owen et al., 1997; Taylor and Mitchell, 2000; Owen
et al., 2001; Owen et al., 2006). In Lahul, glaciation was very
widespread during the Lateglacial with an extensive valley glacier
system filling the main trunk valleys (Owen et al., 1997, 2001). In
contrast, in Ladakh, glaciers only advanced a few kilometers from
their present positions during the Lateglacial (Owen et al., 2006).
Current studies in the Zanskar Himalaya indicate a gradual reduc-
tion in glaciation extent throughout the Quaternary, but the details
of these glaciations are sparse (Taylor and Mitchell, 2000).

Our two main areas of study were the Puga and Karzok valleys
located in the Zanskar Range (Fig. 1). Moraines and associated
landforms were studied in these two valleys to elucidate the style
and timing of glaciation in this transitional zone between Lahul
and Ladakh. Our study areas are separated by w25 km (Puga to
the north and Karzok to the south). This distance provides the
spatial resolution that allows a test of whether there are any
Fig. 1. Location of study area in the northwest Himalaya of northern India. Box 1efield area
of Owen et al. (1997, 2001).

Please cite this article in press as: Hedrick, K.A., et al., Towards defining the
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significant climatic gradients across the Zanskar Range. We also
hoped to determine the location of the transition between more
extensive ice systems, as were present in Lahul, to very restricted
glaciation as in Ladakh. We utilize geomorphic mapping, remote
sensing imagery, and 10Be surface exposure dating to develop
quantitative glacial chronologies that can be compared with
previously established chronologies.

2. Regional setting

The Ladakh and Zanskar Ranges of the Transhimalaya, and
the Pir Panjal and Greater Himalaya of Lahul are located at the
western end of the Himalayan-Tibetan orogen. These mountain
ranges rise from valleys with floors at w3500 m above sea level
(asl) to summits extending >6000 m asl (Owen et al., 1997; Taylor
and Mitchell, 2000; Owen et al., 2006). Closure of the Neo-Tethys
Ocean and subsequent collision and partial subduction of the
continental Indian plate beneath the Asian plate w55 Ma resulted
in the formation of the Zanskar Suture Zone (ZSZ) and the Indus-
Tsangpo Suture Zone (ITSZ) between the Ladakh and Zanskar
Ranges (Schulp et al., 2003; Steck, 2003; Epard and Steck, 2008;
Fig. 1). The ITSZ is the main boundary zone of the Indian and Asian
plate collision (Searle et al., 1999). Lithotectonic units of the region
are composed ofmetamorphosed sedimentary units of the Tethyan,
Tetraogal, and Mata Nappes (Steck et al., 1998; Schulp et al., 2003;
Epard and Steck, 2008) as well as granites and greenschist-facies
lithologies of the Zildat and Nidar ophiolitic mélanges (Steck et al.,
1998; Schulp et al., 2003).

Zanskar is a high-altitude desert (e.g. Bookhagen et al., 2005),
but direct climate data measured from within the Zanskar Range
are not available. Osmaston (1994) suggest that data from the Leh
weather station (34� 090N, 77� 340E, 3514 m asl; Fig. 1) is most
representative of Zanskar’s climate. The thirty-year average annual
precipitation at Leh is w115 mm/yr with w41% falling from July to
of Owen et al. (2006); box 2efield area of Taylor and Mitchell (2000); box 3efield area
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September and w35% falling from December to March (Osmaston,
1994; Taylor and Mitchell, 2000). However, Osmaston (1994)
present anecdotal data that suggest precipitation is higher,
possibly 200e250 mm/yr (Osmaston, 1994). Precipitation at alti-
tudes <5500 m asl may fall as rain, but above this elevation, it falls
as snow (Ives and Messerli, 1989).

Leh, on the southern slope of the Ladakh Range, has January
mean maximum and minimum temperatures of �2.8 �C and
�14.0 �C, respectively, with a July mean temperature maximum of
24.7 �C and a minimum of 10.2 �C (Osmaston, 1994; Taylor and
Mitchell, 2000). There is a strong temperature gradient with alti-
tude (w1 �C increase per 170 m) and an increase of precipitation
(not quantified) (Derbyshire et al., 1991).

Satellite Tropical Rainfall Measuring Mission (TRMM) data are
available for the entirety of the Himalayan-Tibetan orogen through
the National Aeronautics and Space Administration’s (NASA) Gio-
vanni TRMM Online Visualization and Analysis System (TOVAS).
Precipitation information plotted for the region outlined in Fig. 1
illustrates the strong precipitation gradient from the southern to
northern ranges (Fig. 2). The Puga and Karzok valleys are located
within different precipitation ranges: the Puga and Karzok valleys
receive 500e600 mm/yr and 600e700 mm/yr precipitation,
respectively. In contrast, the TRMM data shows that the annual
precipitation in Lahul and the Ladakh Range is 800e900mm/yr and
400e500 mm/yr, respectively.

Across the Transhimalaya, two-thirds of the annual precipita-
tion is supplied by the south Asian monsoon during the summer,
whereas the remaining one-third is brought by the mid-latitude
westerlies during the winter (Murakami, 1987; Benn and Owen,
1998). Geochemical and paleontological studies of lake core
records in Zanskar and Ladakh from Tso Kar (Demske et al., 2009)
and Pangong Tso (Gasse et al., 1996), and in Tibet from Seling Co (Gu
et al., 1993) and Sunxi-Longmu Co (Gasse et al., 1991; Gasse, 1993)
indicate that the strength of the south Asian summer monsoon has
fluctuated considerably during the Late Quaternary (Gasse et al.,
Fig. 2. Annual precipitation values for the overviewmap shown in Fig. 1, averaged over
a 30-year period. Map generated using TRMM data from the NASA (2009) Giovanni
TOVAS utilizing data from January 1979 to June 2009. Box 1 delineates field area of
Owen et al. (2006); box 2 delineates field area of Taylor and Mitchell (2000); box 3
delineates field area of Owen et al. (1997, 2001).
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1996; Bookhagen et al., 2005; Demske et al., 2009), and at times
of increased intensity may have contributed 40e100% more
precipitation than today (Shi et al., 2001).

2.1. Previous glacial geologic studies

Studies in Lahul utilizing OSL and 10Be dating methods define
four glacial stages: the Chandra, Batal (I and II), Kulti, and Sonapani
(I and II) (Owen et al., 1995, 1997). During the Chandra glacial stage
extensive valley glacier systems advanced to elevations <3800 m
asl and extended>100 km, but an absolute age for this glaciation
has not yet been determined. Batal glacial stage (15.5e12 ka) ice
was also an extensive glacier valley system that stretched >100 km
and reached below 4000 m asl. Kulti glacial stage (w11.4e10 ka)
glaciers extended w10 km from their present positions and were
restricted to tributary valleys. The Sonapani glacial stage (a few
hundred years ago) saw glaciers advancing <2 km from the
modern-day ice margin. In the Zanskar Range, Osmaston (1994)
used geomorphic methods to identify four glacial stages (M1, M2,
M3, and M4) but did not undertake any numerical dating. Mitchell
et al. (1999) and Taylor and Mitchell (2000) later examined the
glacial record in Zanskar using geomorphic mapping and OSL
dating. They adopted the glacial stage names proposed by Owen
et al. (2001) for Lahul and argued for extensive glaciation during
the Chandra glacial stage in Zanskar. Taylor and Mitchell (2000,
2002) cited the location of boulders on high rock benches
>100 km from the present-day ice margin and suggested they are
Chandra glacial stage erratics. Taylor andMitchell (2000, 2002) also
suggested that during the Batal glacial stage glaciers were confined
to tributary valleys and were sourced by the High Himalaya and the
Nimaling massif, requiring glaciers to have extended >30 km from
their present-day positions. Taylor and Mitchell (2000) suggested
that the Kulti stage glaciation was restricted to tributary valleys,
reaching onlyw15 km from present-day positions. Sonapani glacial
stagemoraines are located<2 km from present-day glacier termini,
but Taylor and Mitchell (2000) did not undertake any numerical
dating on these.

Taylor and Mitchell (2000) adopted Owen et al.’s (2001) Lahul-
based glacial stage names for the Zanskar Range. However, the
numerical dating of Owen et al. (2001) showed that this was not
appropriate since the correlated landforms were of different ages
(see Owen et al., 2002b for discussion). Owen et al. (2002b) pointed
out that the “erratics” described by Taylor and Mitchell (2000,
2002) were derived locally and many are non-glacial in origin.
Taylor and Mitchell’s (2000) OSL dating of lacustrine sediments
associated with Batal glacial stage deposits in the Zanskar Range
provided an age of w78 kadmarkedly different from 10Be ages of
moraine boulders from the Batal glacial stage in Lahul. Taylor and
Mitchell (2000, 2002) acknowledged this but did not take into
account the possibility that glaciation was asynchronous between
Lahul and Zanskar (Owen et al., 2002b). OSL dating of associated
fluvioglacial sediments by Taylor andMitchell (2000) date the Kulti
glacial stage end moraines to w16 and w12 ka, which contrasts
markedly with the early Holocene 10Be ages for the Kulti glacial
stage in Lahul (Owen et al., 2001). Using recessional moraines and
associated landforms Taylor and Mitchell (2000) argued that the
maximum extent of glaciers during the Kulti glacial stage occurred
at w13 ka with a late stage landform at w10 ka. This contrast in
ages, presuming the dating is robust, illustrates the problems of
using morphostratigraphy to correlate glaciation across mountain
ranges.

Damm (2006) extended the glacial chronology in the Zanskar
Range using geomorphic evidence, and recognized eight glacial
advances in the Markha Valley and northern Nimaling Mountains.
Fromoldest toyoungest,Damm(2006) called theseglacial advances,
transition in style and timing of Quaternary glaciation between the...,
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the Skio I, Skio II, Chaluk, Hankar, Nimaling I, Nimaling II, Gapo
Ri I/Dzo Jongo I/KangYaze and theGapoRi II/Dzo Jongo II/TaskenRi II
and correlated thesewith chronologies established by Fort (1983) in
the Ladakh Range. Damm (2006) also compared them to landforms
described in Osmaston’s (1994) studies in the Zanskar Range and to
chronologies in Lahul (Owen et al., 1995, 1997; Owen and England,
1998). However, Damm (2006) did not undertake any numerical
dating.

Fort (1983) and Burbank and Fort (1985) undertook the first
glacial geologic studyof the southern slopesof theLadakhRangeand
presented evidence for at least four glacial advances. Later work by
Owen et al. (2006) confirmed the evidence for four glacial advances
and recognized a fifth glacial advance, which they called the Bazgo
glacial stage. Owen et al. (2006) summarized the evidence for
glaciation on the southern slopes of the Ladakh Range and provided
10Be exposure ages to define the timing of glaciation. Their data
showed that glaciers filled the Indus Valley during the oldest glacial
stage (>430 ka), the Indus Valley glacial stage, with an extensive
valley system extending >100 km. Owen et al. (2006) showed that
glaciers extended to the mountain front of the southern Ladakh
Range at an altitude of 3300e3600 m asl,w15 km from the present
glaciers, during the Leh glacial stage, between w130 and 200 ka.
These ages confirmed earlier-determined 10Be ages of Brown et al.
(2002) on a moraine near Leh (recalculated to w150 ka using the
scaling models and production rates in our paper). A less extensive
glacier advance, the Kar glacial stage, extended to 4300e4600masl,
<7km frompresent icemargins andwasdatedbyOwenet al. (2006)
to the last glacial cycle, but due to data scatter could not be better
defined. The Bazgo glacial stage, was dated to 41e74 ka, and records
a glaciation when glaciers extended to 4600e4800 m asl, w5 km
from the present glacier positions (Owen et al., 2006). Moraines of
the Khalling glacial stage are present at 4950e5200 m asl, within
<5 km from the present glaciers, and likely formed during an early
Holocene glacier advance; however, insufficient data makes the age
of the Khalling glacial stage tentative (Owen et al., 2006).

Reconstructions for former equilibrium-line altitudes (ELAs) for
Lahul, Zanskar, and Ladakh are sparse owing to the lack of good
topographic maps, the poor resolution on most remote imagery,
and the lack of preservation of many of the glacial landforms.
Nevertheless, Burbank and Fort (1985) presented ELA calculations
for the southern slopes of the Ladakh Range and northern slopes of
the Zanskar Range. Since they did not have any absolute dating they
assigned moraines to stages based on position and characteristics
such as boulder and moraine weathering. Burbank and Fort (1985)
noted two major glacial moraines in both southern Ladakh and
northern Zanskar and attribute them to the Leh glacial stage, sug-
gesting that these formed during the late Pleistocene maximum
advance, and the Kar glacial stage was the recessional stage rep-
resenting a retreat of ice during the Lateglacial. Leh glacial stage
moraines in Ladakh extend w15 km downvalley from the 1985 ice
margin and Kar glacial stage moraines reach w8 km downvalley.
Zanskar moraines indicate more restricted glaciation; Leh glacial
stage moraines are located atw10 km from the 1985 glacial margin
with the Kar glacial stage moraines located �5 km from the 1985
ice margin. ELA depressions for the Ladakh Range and the Zanskar
Range calculated from the Leh stage moraine by Burbank and Fort
(1985) are 900e1000 m and only 500e600 m, respectively.

Damm (2006) also reconstructed ELAs within the Zanskar
Himalaya but they are difficult to directly compare with exact
dating of glacial moraine boulders. Damm (2006) showed ELA
depressions >1000 m in the Skio I and Skio II stages with
progressively lower values through time: 670 m during the Chaluk,
510 m during the Hankar, 400 m during the Nimaling I, 350 m
during the Nimaling II, and ELA depressions <70 m for the Gapo Ri
I/Dzo Jongo I/Kang Yaze and Gapo Ri II/Dzo Jongo II/Tasken Ri II
Please cite this article in press as: Hedrick, K.A., et al., Towards defining the
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stages. These ELA depression values chronicle progressively more
restricted glaciation over time in Zanskar.

Former ELAs were not calculated for the Puga or Karzok valleys
because appropriate glacial landforms (e.g. terminal moraines) are
not preserved. Furthermore, it is difficult to use ELA to quantify
the magnitude of glaciation in high mountain regions due to
complicating factors on mass balance such as snow input from
avalanching, debris cover, and topographic effects (Benn and
Lehmkuhl, 2000). Future studies might utilize better-preserved
moraines in order to reconstruct former ELAs.

3. Methods

3.1. Field methods

Landforms in the Puga and Karzok valleys were identified and
mapped in the field aided by topographic maps generated from a 3
arc-second (w90 m) Shuttle Radar Topography Mission (SRTM)
digital elevation model (DEM) (Jarvis et al., 2006). Present-day
glacier locations and extents were observed in the field or deter-
mined by analysis of NASA Worldwind (NASA, 2006) and Google
Earth imagery (Google and Google Earth, 2009).

Moraines were divided on the basis of morphostratigraphy in
both study areas. Well-defined, high-relief moraines with sharp
ridge crests were chosen in preference to degraded moraines for
10Be dating. Three to seven moraine boulders were sampled for
10Be dating from each moraine to help determine their age. Most of
the sampled boulders are composed of granite, but other quartz-
rich lithologies were also sampled such as granodiorite and augen
gneiss, and where possible, large, unweathered, tabular boulders
>1 m long with well-developed rock varnish and inset into the
moraine were chosen in preference to those that showed any
possible signs of weathering and/or toppling. Horizontal, flat-top-
ped and debris-free boulders were selected to avoid the need for
shielding corrections; however, five boulders (India-45, India-47,
India-52, TM-B, and TM-C) required shielding corrections for
sloping surfaces.

Using a hammer and chisel, w500 g of rock was collected from
each boulder; the sampled depthwas 1e5 cm. The characteristics of
the boulder, including lithology, size, shape, emplacement, rock
varnish, angle of sampled surface, and topographic shielding were
recorded. Topographic shielding was determined by taking incli-
nation measurements from the boulder surface to the surrounding
summits and ridges. Photographs were taken of the boulders and
sampling sites (Data Supplement Item). The location of each
boulder was recorded using a hand-held Garmin GPS60.

3.2. 10Be surface exposure age dating

Purification of quartz, chemical separation of Be, and cathode
preparation followed the methods described in Kohl and
Nishiizumi (1992) and Dortch et al. (2009). Puga samples (India-
10 to India-20 and India-45 to India-55) were processed in the
geochronology laboratories at the University of Cincinnati. Karzok
samples (TM-B to TM-F and TM-1 to TM-20) were processed at
Korea University. All samples were loaded into steel cathodes. The
Puga valley samples were measured at the Purdue Rare Isotope
Measurement (PRIME) Laboratory and the Karzok valley samples
weremeasured at the Accelerator Mass Spectrometry Laboratory at
the Korea Institute of Geosciences and Mineral Resources using
Accelerator Mass Spectrometry (AMS).

10Be exposure ages were calculated using the CRONUS 10Be-26Al
exposure age calculator (version 2.2, Balco, 2009; Table 1 and
data supplement item Table DS1), which utilizes Lal’s (1991) and
Stone’s (2000) scaling factors and a density value of 2.75 g/cm3.
transition in style and timing of Quaternary glaciation between the...,



Table 1
Locations of sampled boulders, boulder size, weathering, lithology, sample thickness, shielding, and 10Be measurements and surface exposure ages.

Sample name Relative
age

Location Altitude (m asl) Boulder size Weathering
characteristics

Lithology Sample t
hickness
(cm)

Topographic
shielding factor

10Be
(104 atoms/g)

Minimum 10Be
exposure age
(ka)

Latitude (�N) Longitude (�E) Length (cm) Width (cm) Height (cm)

Puga
India-45 PM-3 33.226 78.166 5266 175 110 120 SW granite 3 1.00 4.45 � 0.30 0.46 � 0.05
India-46 PM-3 33.226 78.167 5263 170 190 170 SW/MB metagranite 3 1.00 1.82 � 0.21 0.19 � 0.03
India-47 PM-3 33.226 78.167 5257 170 130 135 SW granite 3 1.00 11.74 � 0.47 1.22 � 0.12
India-48 PM-3 33.226 78.167 5267 185 90 95 SW/SB granite 2 1.00 10.22 � 0.48 1.05 � 0.10
India-49 PM-3 33.226 78.167 5260 155 110 125 SW granite 4 1.00 2.40 � 0.31 0.25 � 0.04
India-50 PM-3 33.226 78.167 5265 w80 w50 w100 SW granite 3 1.00 2.55 � 0.34 0.26 � 0.04
India-10 PM-2 33.245 78.200 4910 250 180 135 SW/SB leucogranite 3 1.00 62.54 � 3.21 7.59 � 0.77
India-11 PM-2 33.245 78.201 4905 270 220 140 MW/SB granite 3 1.00 42.94 � 2.96 5.22 � 0.58
India-12 PM-2 33.245 78.201 4904 450 420 170 SW/MB granite 2 1.00 20.84 � 1.97 2.51 � 0.32
India-13 PM-2 33.245 78.201 4899 200 170 80 SW/DB granite 2 1.00 307.50 � 7.55 37.46 � 3.41
India-14 PM-2 33.244 78.202 4886 270 120 100 MW metagranite 2 1.00 5.45 � 1.22 0.66 � 0.16
India-56 PM-2 33.244 78.198 4924 170 110 90 SW/DB granite 3 1.00 29.04 � 0.75 3.50 � 0.32
India-57 PM-2 33.245 78.199 4921 w100 w50 w90 SW granite 3 1.00 17.76 � 0.70 2.14 � 0.21
India-51 PM-1 33.237 78.182 5104 150 100 65 SW/MB leucogranite 5 1.00 1005.93 � 26.57 116.89 � 10.93
India-52 PM-1 33.237 78.182 5092 121 w80 70 SW/MB granite 2 0.98 435.00 � 5.50 49.57 � 4.41
India-53 PM-1 33.237 78.182 5091 170 150 60 SW/DB granite 3 0.97 469.51 � 5.37 54.76 � 4.86
India-54 PM-1 33.237 78.182 5094 200 155 45 SW/DB granite 2 0.96 308.02 � 3.85 35.59 � 3.15
India-55 PM-1 33.237 78.182 5093 165 w60 150 HW/SB granite 3 0.98 365.30 � 4.26 42.21 � 3.74
India-15 PM-0 33.247 78.203 4863 330 190 120 SW/MB granite 5 1.00 1010.61 � 39.47 131.43 � 12.94
India-16 PM-0 33.248 78.202 4802 310 130 100 SW/DB quartzite 4 1.00 967.04 � 33.11 128.16 � 12.36
India-17 PM-0 33.248 78.202 4861 270 160 65 SW/SB quartzite 2 1.00 844.49 � 26.40 106.50 � 10.10
India-18 PM-0 33.248 78.202 4863 210 110 70 MW quartzite 3 1.00 947.18 � 29.91 120.79 � 11.51
India-19 PM-0 33.249 78.200 4875 400 220 110 SW/SB granite 2 0.99 1292.66 � 54.78 165.85 � 16.71
India-20 PM-0 33.249 78.200 4876 410 270 140 MW/DB granite 5 0.99 925.43 � 23.46 120.38 � 11.23

Karzok
TM-B KM-4 32.971 78.182 5306 170 252 160 SW/DB augen gneiss 2 1.00 47.04 � 8.73 4.75 � 0.97
TM-C KM-4 32.971 78.182 5309 180 160 70 HW/MB granite 3 1.00 207.93 � 15.08 21.31 � 2.43
TM-D KM-4 32.971 78.182 5309 290 180 90 MW/DB metagranite 3 1.00 33.21 � 6.28 3.39 � 0.71
TM-F KM-4 32.971 78.181 5318 170 170 100 MW/DB metagranite 1 1.00 26.54 � 3.79 2.65 � 0.44
TM-1 KM-3 32.977 78.203 5010 70 100 124 SW/MB gneiss 5 1.00 577.43 � 74.55 69.51 � 11.01
TM-2 KM-3 32.977 78.203 5010 66 90 68 MW/MB gneiss 5 1.00 497.33 � 26.32 59.73 � 6.17
TM-3 KM-3 32.978 78.203 5011 81 101 126 MW/DB granite 5 1.00 735.84 � 33.76 88.97 � 8.94
TM-4 KM-3 32.978 78.203 5013 84 80 163 MW/DB gneiss 5 1.00 274.10 � 35.09 32.65 � 5.09
TM-6 KM-2 32.982 78.211 4859 86 75 121 MW/MB gneiss 5 1.00 574.07 � 30.26 74.10 � 7.67
TM-7 KM-2 32.982 78.211 4858 100 152 185 MW/MB gneiss 5 1.00 212.26 � 9.20 27.09 � 2.65
TM-8 KM-2 32.982 78.212 4855 74 174 225 HW/MB gneiss 5 1.00 162.28 � 15.27 20.71 � 2.67
TM-9 KM-2 32.982 78.212 4851 73 138 136 MW/SB gneiss 5 1.00 748.47 � 18.34 97.54 � 9.02
TM-10 KM-2 32.983 78.212 4850 123 174 290 SW/MB gneiss 5 1.00 184.97 � 23.68 23.68 � 3.69
TM-11 KM-2 32.984 78.212 4849 127 138 205 MW/MB gneiss 5 1.00 648.59 � 20.25 84.32 � 7.95
TM-12 KM-1 32.983 78.214 4785 76 192 113 SW/SB gneiss 5 1.00 108.61 � 12.63 14.29 � 2.08
TM-13 KM-1 32.983 78.214 4785 52 103 197 MW/SB gneiss 5 1.00 407.05 � 34.90 54.10 � 6.69
TM-14 KM-1 32.983 78.214 4782 97 123 278 MW/SB gneiss 5 1.00 95.15 � 7.52 12.53 � 1.48
TM-15 KM-1 32.983 78.214 4781 121 57 143 SW/SB leucogranite 5 1.00 994.66 � 35.32 135.13 � 13.12
TM-16 KM-1 32.984 78.215 4768 123 78 147 SW/SB granite 5 1.00 563.29 � 17.46 75.86 � 7.13
TM-17 KM-1 32.984 78.216 4762 137 85 192 MW/MB gneiss 5 1.00 176.24 � 12.43 23.49 � 2.64
TM-18 KM-0 32.961 78.254 4712 52 58 49 HW/DB quartzite/quartz vein 5 1.00 2099.91 � 17.71 307.58 � 29.02
TM-19 KM-0 32.961 78.254 4713 61 52 57 HW/SB quartzite/quartz vein 5 1.00 2137.69 � 25.29 313.41 � 29.74
TM-20 KM-0 32.961 78.258 4710 38 35 42 HW/MB quartzite/quartz vein 5 1.00 1385.25 � 29.56 197.72 � 18.59

Boulder weathering characteristics: SWeSlightly weathered, MWeModerately weathered, HWeHighly weathered, SBeSlightly buried, MBeModerately buried, DBeDeeply buried.
Production rate for the CRONUS calculator is a sea level low-latitude production rate of 4.5 � 0.310Be atoms/grams SiO2/year and a 10Be half-life of 1.36 Ma.
Isotope measurements were calibrated using KN Standard Be 0152 with a 9Be/10Be ratio of 8.558 � 10e12 (c.f. Nishiizumi et al., 2007 Q3).

K
.A
.H

edrick
et

al./
Q
uaternary

International
xxx

(2010)
1
e
13

5

JQ
I2443_proof

■
9
S
eptem

ber
2010

■
5/13

Please
cite

this
article

in
press

as:H
edrick,K

.A
.,etal.,Tow

ards
de

fining
the

transition
in

style
and

tim
ing

ofQ
uaternary

glaciation
betw

een
the...,

Q
uaternary

International(2010),doi:10.1016/j.quaint.2010.07.023

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630



K.A. Hedrick et al. / Quaternary International xxx (2010) 1e136

JQI2443_proof ■ 9 September 2010 ■ 6/13

631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
CRONUS also allows 10Be exposure age calculations based on the
scaling factors of Dunai (2001), Lifton et al. (2005), and Desilets
et al. (2006). In this paper, we use the Lal (1991) and Stone
(2000) time-independent model. Owen et al. (2008) and Balco
et al. (2009) have recently discussed scaling models, and their
effects on 10Be ages highlighting that the range of different scaling
models can change calculated 10Be ages significantly. The
maximum difference between the exposure ages using the Stone
(2000) and Lal (1991) scaling algorithms compared to exposure
ages calculated using the Dunai (2001), Lifton et al. (2005), and
Desilets et al. (2006) scaling models for our study area is large; for
example, at 1 ka the ages can vary by w8%, at 15 ka by w10%, at
25 ka byw20%, at 50 ka byw43%, at 100 ka byw40% and at 150 ka
by w47%. However, systematic corrections for scaling models
would not likely affect correlation between landforms within
adjacent regions considered in our study. No correction is made for
boulder erosion or snow cover, so 10Be ages are minimum ages.

AMS measurements report both internal (essentially analytical)
and external (analytical and production rate uncertainty) error at
1s. The larger of the two errors (external) was taken for each
sample to ensure greatest certainty in the reported ages. To
examine ages consistently, a 2s error was used to statistically
determine boulder outliers within a moraine sample set. Boulders
with ages that did not overlap with a 2s error were considered
outliers and were removed from the dataset. The average of the
remaining data points was taken to determine the moraine surface
age, and the standard deviation of the viable samples is reported as
the error. The 10Be ages for each moraine boulder were also
assessed using the Mean Square Weighted Deviation (MSWD)
methods of McDougall and Harrison (1999) to test whether they
could statistically represent one population or event. McDougall
and Harrison (1999) remove outliers from the dataset until
a statistical indicator of w1 is reached, with a minimum of three
data points required to constitute a population. In our MSWD
analyses, we use a statistical indicator of �1 as the cutoff value for
a viable population.

4. Study areas

Both the Puga and Karzok valleys are located inwestern Zanskar,
southeast of Leh, south of the Indus River along the southeastern
side of the Zanskar Range. The Puga valley is located within the
northwestesoutheast trending Tso Moriri dome along the dome’s
northeastern margin. The Tso Moriri dome exposes ultra-high
pressure metamorphic rocks (de Sigoyer et al., 1997; Guillot et al.,
1997) composed principally of granite and granodioritic orthog-
neisses and meta-basic rocks. The Puga valley forms a half-graben,
one of a series of grabens and half-grabens extending across the
Transhimalaya in Zanskar, recording post-middle Miocene exten-
sion (Steck, 2003; Thiede et al., 2006) and marked by asymmetric
valley walls, lakes, and hot springs. The Karzok valley is located
along the southwestern flank of the dome in metasedimentary
rocks of the Mata nappe that overlie orthogneisses exposed in the
dome core.

The Puga valley is located w115 km southeast of Leh and rises
from a valley floor at w4500 m asl to high peaks at w6000 m asl
(Figs. 1 and 3). Tso Kar (Tso ¼ lake), a salt lake which drains east
through the Puga valley in times of high water (e.g. Rawat and
Adhikari, 2005) is located to the west of the Puga valley. The Puga
valley isw15 km long and contains the Puga River, a small river that
drains to the east. The Puga River joins with an un-named river
draining Kiagar Tso to form a freshwater lake located to the south of
the village of Sumdo. The Puga River continues to flow east, where
it joins with the Indus River. Within the Puga valley, the Puga River
helps form marshes and low-flow areas due to the contribution of
Please cite this article in press as: Hedrick, K.A., et al., Towards defining the
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various hot springs in the valley floor in central Puga (e.g. Singh
et al., 2005; Azeez and Harinarayana, 2007). River flow intensifies
daily and seasonally with snow and ice melt from tributary valleys.

The Puga valley and its tributaries contain abundant glacial and
fluvial landforms including moraines, polished bedrock, glacial
benches, hummocky terrain, and alluvial fans. In the east, the valley
floor is level and is w1 km wide, while to the west the valley floor
becomes progressively narrower and uneven due to accumulations
of unconsolidated debris. At its western end the Puga River has
incised w30 m through debris to form a deep gorge and w2 km to
the west of this point a large (w10 km long) tributary valley on the
southern side of the main valley contains an impressive set of
moraines where boulders were sampled (Fig. 4).

The Karzok valley is located w25 km south of the Puga valley.
The primary drainage of the Karzok valley follows the southern
valley wall and is joined by tributary meltwater streams. These
streams converge in the south-central portion of the valley and
flow fromwest to east into Tso Moriri, a high-altitude, brackish lake
set in a glacial depression (Negi, 2002). This lake has no outlet. The
valley is bounded on its western side by a normal fault. Springs are
present in many areas of the Karzok valley, primarily in the main
eastewest trunk valley, that also contribute to the valley’s primary
river. At its longest (trending southeast to northwest) the valley
stretches for w11 km. The Karzok valley floor is at an altitude of
w4500 m asl and surrounding peaks rise to w6000 m asl. Glacial
and fluvial landforms dominate the landscape; the most common
are large alluvial fans and extensive hummocky moraines.
Moraines were sampled near the town of Karzok at the mouth of
the valley and in a 4-km-long tributary valley locatedw4 km to the
west of Karzok.

Modern glaciers are present in many of Puga’s and Karzok’s
tributary valleys at elevations >5000 m asl. Most glaciers are
<3 km and commonly <2 km long. Glaciers in the tributary valleys
of Puga are typically smaller than those in the tributary valleys of
Karzok. Some glaciers in the tributary valleys of Puga are debris-
mantled and extend down to 4600 m asl.

5. Landform descriptions

5.1. The Puga valley

The Puga valley contains four distinct moraines. From the oldest
to youngest we name these moraines: PM-0; PM-1; PM-2; and
PM-3. The PM-0 moraine (Fig. 3, location A) trends generally
northwestward and is located at the confluence of a tributary and
the main Puga Valley. The PM-0 (Figs. 3 and 4) moraine is sharp-
crested and stretches for w60 m along its length. PM-0 has low
relief; it is w2 m high and w3 m wide across the crest with side
slopes ofw4�. PM-0 is most likely a lateral moraine due to its nearly
straight morphology and its position adjacent to the valley wall.
The moraine is composed of a high concentration of large boulders
1- to 2-m-long atw1 large boulder per 5 mmoraine length, as well
as abundant smaller boulders (40- to 60-cm-long). The PM-0
moraine overlies alluvial outwash fan deposits. Less distinct,
discontinuous ridges appear on either side of the PM-0 moraine.
The PM-0 moraine was formed when a glacier advanced down the
main valley from the northwest.

The PM-1 moraine is a lateral moraine (Fig. 3, location B, and
Fig. 4) and forms a distinctive southwest-trending ridge, which
rises w3 m. The sampled section of the moraine is w200 m long
and w6 m wide. Up-valley from the sampling locations, the
moraine ridge becomes less distinct as it onlaps the valley wall and
downvalley as it trends into hummocky terrain. Boulders on the
PM-1 moraine are generally smaller than those on the PM-0 and
PM-2 moraines (<2 m) and the PM-1 moraine has larger boulders
transition in style and timing of Quaternary glaciation between the...,



Fig. 3. Puga Valley moraine locations and sampling sites.

Fig. 4. Puga Valley moraines and sampled boulders. A) PM-0 moraine showing sample India-13, viewed to the north showing surrounding moraines, B) PM-1 moraine, sample
India-54, viewed to the west showing typical boulder size and abundance, C) PM-2 moraine, viewed to the south (no boulders were sampled in this view), D) PM-3 moraine
showing the boulder for sample India-48 viewed to the west and showing valley profile in background.
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with an axis >1.5 m long and are less abundant than on the PM-0
and PM-2 moraines. Moraine PM-1 hasw2 large boulders per 10 m
of moraine length.

The PM-2 moraine (Fig. 3, location C, and Fig. 4) is located
w200 m up-valley from PM-0 and w0.5 km downvalley from the
PM-1moraine, and is<2m high andw4mwide, and slopes atw4�

to the north. PM-2 most likely represents a latero-frontal moraine.
The moraine stretches for w60 m and is covered with large, 2- to
3-m-long boulders. The moraine becomes difficult to distinguish as
it onlaps the northwestern valley wall. Boulders become generally
larger andmore abundant farther from the valleywalls, near sample
locations India-12, India-13, and India-14. The PM-2 moraine was
formed by a glacier that originated from the southwest.

The PM-3moraine (Fig. 3, location D, and Fig. 4) is an arc-shaped
ridge that rises w2 m and is w8 m wide, and is broadly perpen-
dicular to the valley walls. Large boulders on the PM-3 moraine are
more abundant than on the PM-1 moraine, and boulders in general
(small, moderate, and large) are more abundant than on all other
moraines. The northwestern edge of the moraine onlaps the valley
wall and becomes less distinct up-valley. The moraine is located in
the same tributary valley as the PM-1 and PM-2 moraines, and was
sourced from the same up-valley glacier.

5.2. The Karzok valley

The Karzok valley contains a distinct moraine, which is the most
extensive preserved glacial landform in the valley and provides
evidence for the most extensive glaciation d named KM-0 d, and
two largemoraine complexes. The KM-0moraine (Fig. 5, location A,
and Fig. 6) is located w4 km to the east of the younger moraine
complex, near the village of Karzok at the far eastern end of Karzok
valley, w600 m west of Tso Moriri (Fig. 5). The KM-0 moraine is
Fig. 5. Karzok Valley moraine lo
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a lateral moraine located on a gently sloping ridgew30m above the
valley floor. The moraine is intensely weathered with low relief,
rising to w0.5 m. Several streamlined bullet-shaped boulders are
present on the surface of the moraine. The larger moraine complex
was sampled on three moraines that form distinct ridges (KM-1,
KM-2, and KM-3) (Fig. 5, location B). The KM-1moraine (Figs. 5 and
6) is a sharp-crested lateral moraine w1 km long, w10 m high and
w13 m wide. Large boulders >1.5-m-long, smaller boulders, and
cobbles are present on its surface. Most of the boulders are highly
weathered and are covered with abundant lichen.

The KM-2moraine (Figs. 5 and 6) is a latero-frontal moraine that
is located w30 m to the southwest of the KM-0 moraine. The
moraine is sharp-crested but the outer (northern) side is much
more subdued, and gentler than the inner, southern side. Most of
the boulders are severely weathered and low-lying. Large boulders
(>1.5 m) are relatively common on the western end of the moraine
where there isw1 boulder per 5 m of moraine length, but boulders
become rarer east of the sampling site TM-8 (Fig. 5). Moderate sized
bouldersw0.5 m long are muchmore common and persist over the
entirety of the moraine.

The KM-3 moraine (Figs. 5 and 6) is a latero-frontal moraine,
located w2.5 km from the present glacier. The moraine is w1 m
high and w6 m wide. Large boulders are rare, with the most
common boulder size being w1 m long. Moderate sized boulders,
cobbles, and pebbles are also abundant on this moraine, and are
very weathered.

The KM-4 moraine (Fig. 5, location C, and Fig. 6) is a sharp-
crested frontal moraine and is located w0.5 km from the present
glacier. Large boulders (>1 m long), small angular boulders and
cobbles are present on the surface of the moraine and most do not
show any significant signs of weathering.
cations and sampling sites.
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Fig. 6. Karzok Valley moraines and sampled boulders. A) KM-0 moraine showing the boulder for sample TM-18 viewed to the north showing low relief and deflated nature of
moraine, B) KM-1 moraine showing the boulder for sample TM-14 viewed to the west showing steep moraine sides, C) KM-2 moraine showing the boulder for sample TM-7 viewed
to the south, D) KM-3 moraine showing the boulder for sample TM-1 viewed to the west, E) KM-4 moraine viewed to the west illustrating typical boulders.
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6. Ages of landforms

Sample data and exposure age results and are listed in Table 1
and presented in Fig. 7. These data are grouped by the age of each
moraine.
Fig. 7. 10Be boulder age plotted by
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6.1. The Puga valley

Moraines sampled in the Puga valley are distinct and physically
separate, with many large boulders available for sampling. 10Be
ages for the Puga samples cluster well within each moraine, with
relative age and study area.
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few outliers. The data agree with the morphostratigraphy of the
moraines, with the outermost moraines having the oldest ages and
successive moraines up-valley having progressively younger ages.
The PM-1 lateral moraine, although farther up-valley than the
younger PM-2 end moraine, is located closer to the valley wall and
is thus morphostratigraphically older than PM-2. Moreover, the
PM-1 moraine is more denuded, and has smaller (generally <1 m
diameter cf. 1e2 m diameter) and lower relief surface boulders
than the PM-2 moraine. The 10Be ages support this stratigraphic
interpretation.

The 10Be ages for the PM-0 moraine boulders range from w107
to w166 ka with a tighter cluster between w107 and w131 ka and
a mean exposure age of w128.8 � 20.1 ka. Four of the five dated
boulders for the PM-1 moraine cluster between w36 and w55 ka
with an average of w45.5 � 8.4 ka, with an outlier (India-51) of
w117 ka. The 10Be ages for PM-2 moraine boulders cluster between
2.1 and 7.6 ka, with two outliers at 37 ka (India-13) and 0.7 ka
(India-14). For the PM-2moraine, the boulder average exposure age
is 4.2 � 2.2 ka. The PM-3 moraine boulders have 10Be ages that
cluster range from 0.2 to 1.2 ka with no outliers. The average of the
boulder ages for moraine PM-3 is 0.6 � 0.5 ka.

6.2. The Karzok valley

The moraines in the Karzok valley are large and complex. 10Be
ages for boulders on the moraine complexes do not conformwell to
a singular, defined age. However, sample sets from well-defined
and separate, single moraines (KM-0 and KM-4) cluster relatively
well.

The three boulders sampled from the geomorphically distinct
moraine KM-0 contain one outlier; the mean age (excluding the
outlier) is 310.5 � 4.1 ka, with an outlier (TM-20) age of 198 ka.
Boulders were sampled from the distinct ridges on the moraine
complex: six from KM-1, six from KM-2, and four fromKM-3.When
considered separately, boulder ages from these moraine ridges
cluster poorly. KM-1 has a two-boulder cluster at w54 ka to
w76 ka, and a three boulder cluster at 12.5 to 23.5 ka with an
outlier (TM-15) age of w135 ka. KM-2 has two clusters of three
boulders at w74 to w98 ka and w21 to w27 ka, with no outlier
ages. KM-3 shows a three boulder cluster at w60 to w89 ka with
the youngest boulder as an outlier (TM-4) age of w33 ka. Four
boulders were sampled from the sharp-crested frontal moraine
KM-4 and age results show a cluster of three boulders from 2.7 to
4.7 ka with an outlier (TM-C) age of 21.3 ka. The average for these
boulders returns an age of 3.6 � 1.1 ka.

6.3. Further considerations

The Puga valley exposure ages after removing 2s outliers return
approximate averagemoraine ages of 128.9� 20.1 ka, 45.5� 8.4 ka,
4.2 � 2.2 ka, and 0.6 � 0.5 for moraines PM-0, PM-1, PM-2, and
PM-3, respectively (Table 1). 10Be ages after removing 2s outliers
for the KM-3, and KM-4 moraines in the Karzok valley are,
72.7 � 14.9 ka and 3.6 � 1.1 ka, respectively (Table DS2). Only 3
boulders were sampled from the KM-0 moraine, and removal of 2s
outliers results in 2 boulders, which give an average age of
310.5 � 4.1 ka. Although 6 boulders were sampled from the KM-1
moraine, the boulder ages do not display a valid population of 3 or
more boulders, and the KM-2 moraine has two populations of 3 or
more boulders with average ages 85.3 � 11.8 ka and 23.8 � 3.2 ka.
The 10Be age distributions for the KM-1, KM-2, and KM-3 ridges are
complex and a separate age for each of these moraines cannot be
assigned with confidence.

Of the Puga valley moraines, only PM-0 passes MSWD analysis
with an average age of 121.4 � 9.6 ka (compared to 128.6 � 20.1
Please cite this article in press as: Hedrick, K.A., et al., Towards defining the
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with 2s analysis). Karzok valley moraines KM-1, KM-2, and KM-3
show apparent clusters represented on each moraine at w20 ka
andw80 ka (Fig. 7). Considered separately, Karzok valley moraines
do not pass MSWD analysis, however, when considered together
boulders from the large moraine complex containing moraine
ridges KM-1, KM-2, and KM-3 pass MSWD analysis with two
populations at 78.6 � 7.9 ka and 23.7 � 2.6 ka. These ages overlap
with the 2s averages for KM-3 (72.7 � 14.9 ka) and KM-2
(85.3� 11.8 ka and 23.8� 3.2 ka) and provide a compelling pattern.
Older boulders (w80 ka) may represent the initial moraine stabi-
lization as remnants of a glacial advance w80 ka, but with
cosmogenic inheritance and younger boulders (w24 ka) repre-
senting deposition by a subsequent glacial advance at w24 ka.

Older 2s 10Be age outliers in both valleys may be due to incor-
poration and reactivation of remnant boulders from previous
glacial advances in younger glacial deposits. Of the two younger
outliers located on the KM-0 (TM-20) and KM-3 (TM-4) moraines,
the KM-3 moraine boulder (TM-4) fits into MSWD-deduced pop-
ulation at 23.7 ka (as compared to 23.8� 3.2 with 2s analysis). This
boulder could also represent an unearthed boulder through
moraine settling or a boulder more susceptible to erosion, however,
greater erosion is not likely on the TM-4 boulder because it is the
same lithology as moraine boulders TM-1 and TM-2, which return
much older ages.

7. Discussion

10Be ages for moraine boulders in the Puga valley show clear age
clusters for each sampled moraine. In contrast, the 10Be age
distribution for boulders collected from the Karzok valley moraines
are complex with a large range of ages on individual moraines.
KM-4 and PM-2 correlate well between the valleys with ages at
3.6 � 1.1 and 4.2 � 2.2 ka, respectively. However, the record of the
oldest Karzok moraine (TM-0, w311 ka) is asynchronous with the
oldest Puga moraine (PM-0, w116 ka). Correlation of moraine ages
between the valleys is limited.

Boulder ages for the moraine complex in the Karzok valley
(KM-1, KM-2, and KM-3) suggest that glaciers advanced at w80 ka
and/orw24 ka (using 2smean and MSWD values). However, given
the spread of ages on individual moraines, it is not possible to
provide precise and accurate ages for these moraines. Nevertheless,
Taylor and Mitchell (2000) showed that a glacial advance occurred
elsewhere in the Zanskar at w78 ka, and it seems reasonable to
argue that our w80 ka also argues for a glacial advance at w80 ka.
Moraines dated in Ladakh (Owen et al., 2006) also have some
boulders fromw80 ka, but once again, scatter in their dataset does
not allow for confident definition of glacial advance/retreat at that
time, although the coincidence in w80 ka is striking.

Current data for the Puga and Karzok valleys suggest a gap in the
glacial record during the early Holocene (Fig. 8). The obvious gap in
the Puga and Karzok records also contrasts markedly with the
glacial record for Lahul to the south. Kulti and Batal stage glacia-
tions in Lahul (Owen et al., 1997) show glacial advances at 11.4 to
10 ka and 15.1 to 12 ka, respectively, during which time there is
no evidence for glacial advance in either the Puga or Karzok valleys.
Taylor and Mitchell (2000), however, discuss records indicating
advance between 16 and 12 ka, which overlaps with ages of
moraines in Lahul. In the Ladakh Range to the north, the Khalling
stage moraine could not be confidently dated to the early Holocene
due to an inadequate number of sampled boulders (Owen et al.,
2006).

Owen et al. (2006) and Owen (2009) discuss early Holocene
advances in other regions of the Himalaya, including the studies of
Barnard et al. (2004a, b) in the Garhwal to the south of Lahul,
Khumbu Himal to the far east of Lahul (Finkel et al., 2003), and the
transition in style and timing of Quaternary glaciation between the...,
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Fig. 8. Comparison of timing and extent of glaciation in Lahul, Zanskar, and Ladakh. Lahul data are from Owen et al. (1997, 2001), Zanskar data from Taylor and Mitchell (2000) and
this study, and Ladakh data are from Brown et al. (2002) and Owen et al. (2006). Solid black lines indicate average age of a single landform (this study) or multiple landforms of
a single glacial stage (Owen et al., 2006). Gray bars indicate standard deviation uncertainty in ages (this study, Owen et al., 2006), range of 10Be boulder ages (Owen et al., 1997,
2001), or range in OSL ages (Taylor and Mitchell, 2000). Dashed black lines and gray bars with a gradient indicate uncertain extent of glacial advance.
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Karakoram located to the north of the Ladakh Range (Owen et al.,
2002a). Early Holocene glaciation is common in many Himalayan
records but is not apparent in the Puga or Karzok valleys andmay or
may not have occurred in the Ladakh Range. Although further study
is needed to define the timing of the Khalling stage Ladakh glaci-
ation, the records at Puga and Karzok suggest no extensive glacia-
tion at that time. Evidence for early Holocene glaciation is also
lacking on the northern side of Mount Everest in the Rongbuk
Valley (Owen et al., 2009). Although it is possible that early Holo-
cene glacial landforms have not been preserved, Owen et al. (2009)
suggest this is not likely and argue that the topography was too
great to allow penetration of an enhancedmonsoon north of Mount
Everest during the early Holocene. The lack of an early Holocene
glacial advance in Zanskar might reflect similar topographic
controls. However, Owen et al. (2006) argue that the Khalling
glacial stage in the Ladakh Range is early Holocene and this is
clearly to the north of our study area and more distance from
monsoon influences.

Glacial records in Lahul and the Zanskar Range indicate a major
change in style in glaciation from Lahul to Zanskar: Lahul glacia-
tions were very extensive in the Chandra and Batal glacial stages as
valley glacial systems extended �100 km before decreasing
dramatically in extent (w10 km) during the Kulti glacial stage. Our
study and that of Taylor and Mitchell (2000) shows that glacial
Please cite this article in press as: Hedrick, K.A., et al., Towards defining the
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advances became progressively less extensive over time, but
throughout the region glaciers extended similar distances for any
one glacial time. Zanskar glacial timing may be more similar to
glaciation in Ladakh (Owen et al., 2006), however, the deposition
dates of the moraines need to be better defined for more robust
comparisons (Fig. 8).

The glacial records in our study areas are more similar in both
extent and timing to those of the Ladakh Range (Fig. 8). This greater
similarity between the glacial records in our study areas suggest
that the transition to the pattern of glaciation that characterizes
Lahul must be to the south of the Karzok valley and that this
transition is geographically very abrupt.

8. Conclusions

This study presents the first quantitative glacial chronology for
the Puga and Karzok valleys along the southeastern flank of the
Zanskar Range of northern India. This study provides an initial
framework for understanding the glacial records south of the Indus
River in eastern Zanskar and will aid in understanding the nature of
glaciation in the Himalayan-Tibetan orogen as a whole. While it is
not possible to determine precisely the existence or location in
climatic gradient across the Himalaya based on this study alone,
comparison with previous studies in the Ladakh and Zanskar
transition in style and timing of Quaternary glaciation between the...,
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Ranges and in Lahul to the south indicates similarities and notable
differences in the glacial records among these areas. Our study
suggests that such a transition occurs south of the Karzok valley
and that it is geographically very abrupt.

Current records of glacial advances in the Puga and Karzok
valleys suggest glaciation in the two valleys may be asynchronous,
although data from key moraines (KM-1, KM-2, and KM-3) are
difficult to interpret. A correlation of glacial advances between the
valleys atw3.6 ka and 4.2 ka (KM-4 and PM-2) is apparent, but the
record based on 10Be exposure age dating otherwise shows few
similarities. More accurate dating of the KM-1, KM-2, and KM-3
moraine complex may result in a better understanding of the
relationship in glaciation style between the two study valleys.

Moraine ages for the Karzok valley largely agree with the
established glacial record in the Zanskar Range as studied by Taylor
and Mitchell (2000), whereas ages from the Puga valley do not
correlate as well. Additionally, the distinct lack of early Holocene
glacial advances in both the Karzok and Puga valleys contrasts with
studies in many other areas of the Himalaya (Owen et al., 2001;
Finkel et al., 2003; Barnard et al., 2004b). Additionally, the
pattern of glaciation in the Puga and Karzok valleys differs mark-
edly from the southern ranges of Lahul and the Ladakh Range. Lahul
glaciers advanced extensively with valley-fill glacial systems
>10 ka with evidence for only a few glacial stages, which rapidly
decrease to 10 km in length and there were possibly large gaps in
time between glaciations. Glaciation in the Ladakh Range was
restricted to small advances of <15 km beyond the present ice
margins during the past w430 ka, but prior to this glaciers were
much more extensive filling valleys to produce valley glacier
systems >100 km in length.

Both the Puga and Karzok valleys of the Zanskar Range, as well
as Zanskar Range locations studied by Taylor and Mitchell (2000),
reveal glacial advances �10 km from the present-day ice margin,
but evidence for more extensive glaciation within 100 ka is sparse.
Despite their relatively short advance distance, these are moraines
of significant antiquity (>300 ka), possibly exceeding the age of the
oldest dated materials in Lahul and Ladakh.

These data suggest that the region from northern Lahul north-
wards across the Zanskar and Ladakh Ranges are of further interest
and importance in investigating former climatic gradients and their
influence on glaciation. In particular, detailed glacial chronologies
throughout the whole Zanskar Range need to be improved to more
adequately discuss and understand the influences of topography
and the relative roles of different climatic systems in the Hima-
layan-Tibetan orogen.
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