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[1] Recent studies suggest the San Jacinto fault zone may be the dominant structure
accommodating PA‐NA relative plate motion. However, because the late Quaternary slip
history of the southern San Andreas fault system is insufficiently understood, it is difficult
to evaluate the partitioning of deformation across the plate boundary and its evolution.
Landforms displaced by the Clark fault of the southern San Jacinto fault zone were
mapped using high‐resolution airborne laser‐swath topography and selected offset
landforms were dated using cosmogenic 10Be. Beheaded channels at Rockhouse Canyon,
displaced by 500 ± 70 m and 220 ± 70 m, have been dated to 47 ± 8 ka and 28 ± 9 ka,
respectively. Farther south, near the southern Santa Rosa Mountains, an alluvial deposit
displaced by 51 ± 9 m has been dated to 35 ± 7 ka. From these sites, the slip rate of
the Clark fault is determined to diminish southward from 8.9 ± 2.0 to 1.5 ± 0.4 mm/yr.
This implies a slip‐rate decrease along the Clark fault from Anza southeastward to its
surface termination near the Salton Trough, where slip is transferred to the Coyote Creek
fault, and additional deformation is compensated by folding and thrusting in the basin.
These data suggest that since ∼30 to 50 ka, the slip rate along the southern San Jacinto
fault zone has been lower than, or equivalent to, the rate along the southernmost San
Andreas fault. Accordingly, either the slip rate of the San Jacinto fault has substantially
decreased since fault initiation, or fault slip began earlier than previously suggested.

Citation: Blisniuk, K., T. Rockwell, L. A. Owen, M. Oskin, C. Lippincott, M. W. Caffee, and J. Dortch (2010), Late Quaternary
slip rate gradient defined using high‐resolution topography and 10Be dating of offset landforms on the southern San Jacinto Fault
zone, California, J. Geophys. Res., 115, B08401, doi:10.1029/2009JB006346.

1. Introduction

[2] To the south of the Big Bend at approximately 34°5′N
latitude in southern California, the San Andreas fault system
consists of the southern San Andreas, San Jacinto, and
Elsinore fault zones (Figure 1). The southern San Andreas
and the San Jacinto fault zones are the two principal struc-
tures, together accommodating ∼35 mm/yr, that is ∼80%, of
the Pacific‐North America (PA‐NA) relative plate motion in
this region [King and Savage, 1983; DeMets and Dixon,
1999; Bennett et al., 1996; Fialko, 2006]. Geodetically
derived slip rate estimates are on the order of 10–20 mm/yr
for both of these fault zones, but only 2–6 mm/yr for the

Elsinore fault zone [Johnson et al., 1994; Bennett et al.,
1996; Meade and Hager, 2005; Becker et al., 2005; Fay
and Humphreys, 2005].
[3] The San Jacinto fault zone (SJFZ) has historically been

more seismically active than the southern San Andreas fault
zone [Thatcher et al., 1975; Richards‐Dinger and Shearer,
2000], but its longer‐term slip history is controversial.
Although many previous studies across the fault zone have
documented well‐preserved offsets of Quaternary landforms
[e.g., Sharp, 1967, 1981; Rockwell et al., 1990], fault slip
rates are often more poorly defined due to the inherent dif-
ficulties of dating Quaternary deposits. Moreover, the offsets
that have been dated span time scales ranging from 103 to
106 years, complicating direct comparison of slip rates over
comparable periods for the San Jacinto and the San Andreas
fault zones [Sharp, 1981; Weldon and Sieh, 1985; Morton
and Matti, 1993; Harden and Matti, 1989; Rockwell et al.,
1990]. Variation in published slip rates may be resolved by
a kinematic model of codependent slip histories for these fault
zones [e.g., Sharp, 1981; Bennett et al., 2004]. Alternatively,
along‐strike gradients in slip rate could account for the
variety of slip rates measured along these fault zones
without need for temporal variation.

1Department of Geological Sciences, University of California, Davis,
California, USA.

2Department of Geological Sciences, San Diego State University, San
Diego, California, USA.

3Department of Geology, University of Cincinnati, Cincinnati, Ohio,
USA.

4Department of Physics, Purdue University, West Lafayette, Indiana,
USA.

Copyright 2010 by the American Geophysical Union.
0148‐0227/10/2009JB006346

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, B08401, doi:10.1029/2009JB006346, 2010

B08401 1 of 11

http://dx.doi.org/10.1029/2009JB006346
http://dx.doi.org/10.1029/2009JB006346


[4] Presently, there are no slip rate estimates from 10Be
exposure dating of offset landforms along the SJFZ, but the
utility of this method has been demonstrated by recent work
along the San Andreas fault [Matmon et al., 2005; van der
Woerd et al., 2006]. Due to the excellent preservation of
offset landforms in the arid Anza Borrego desert of southern
California, the SJFZ provides an ideal location for surface

exposure dating. Additionally, the availability of high res-
olution laser swath mapping data [Bevis et al., 2005] makes
the SJFZ an outstanding candidate for studying the distri-
bution of strain within a nascent strike‐slip fault system
[Oskin et al., 2007]. In this paper, we present the first late
Quaternary slip rates from 10Be dating of landforms dis-
placed along the central and southern Clark fault segment of
the SJFZ, at Rockhouse Canyon and the southern Santa
Rosa Mountains, respectively (Figure 2). We integrate these
newly determined slip rates with previously published slip
rate estimates for the northern segment and with total bedrock
displacement to make inferences on the long‐term slip rate
history of the SJFZ and its implication to earthquake recur-
rence models used in assessing seismic hazards in southern
California.

2. Tectonic Setting

[5] The ∼230 km long SJFZ extends from the Big Bend of
the San Andreas fault southward with an average strike of
∼N45°W (Figure 1). In the central and southern SJFZ, the
two most active strands are the roughly parallel Coyote
Creek and Clark fault, located ∼10 km apart (Figure 2).
Deformation is partitioned between these two strands dis-
playing numerous active features that offset and fold Creta-
ceous tonalites, meta‐tonalites, cataclasites, and Quaternary
surfaces along the fault and adjacent to the fault (Figure 2)
[Sharp, 1967]. Landforms along the Clark fault strand sug-
gests that it is the dominant strand in accommodating slip of
the southern SJFZ. The right‐lateral strike‐slip behavior of
the Clark fault strand terminates southeast of the Santa Rosa
Mountains into a zone of diffuse faulting and folding in the
northwestern Imperial Valley [Sharp, 1981; Kirby et al.,
2007]. Quaternary features along the Clark fault strand that
indicate youthful activity include folds, offset and deformed
terraces, deflected channels, beheaded channels, offset sur-
faces, fault scarps, and linear ridges.
[6] Total bedrock displacement along the northern and

central section of the SJFZ is ∼22 to 24 km [Sharp, 1967]
based on offset of the Thomas Mountain sill in contact with
metamorphic rocks of the Bautista Complex (Figure 2)

Figure 1. Location map showing the study area along the
southern San Jacinto fault zone. Inset shows the index
map for major faults in southern California. References
are labeled as follows: a, Clark [1972], Sharp [1981], and
Pollard and Rockwell [1995]; b, Hudnut and Sieh [1989];
and c, Gurrola and Rockwell [1996].

Figure 2. Geologic map of the southern San Jacinto fault zone. The black arrows show the amount of
displacement of plutonic, metamorphic and cataclastic rocks mapped by Sharp [1967]. The white star
indicates the location of a previous study along the Clark fault at Anza [Rockwell et al., 1990]. The white
stars with a black dot indicate the locations where we determined the slip rates reported in the present
study. Total bedrock displacement at Rockhouse Canyon is based on reconstructing Cretaceous biotite‐
rich tonalite bodies as mapped by Sharp [1967] across the fault.
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[Sharp, 1967]. Farther south toward Rockhouse Canyon and
the southern Santa Rosa Mountains, Cretaceous tonalite,
metamorphic rocks, and the eastern Peninsular Ranges cat-
aclastic and mylonitic zones are displaced by 14.5 to 17 km
(Figure 2) [Sharp, 1967], and these same zones are dis-
placed ∼3.5 to 4.8 km by the adjacent Coyote Creek fault
strand (Figure 2) [Sharp, 1967; Janecke et al., 2008].
[7] Inception of the SJFZ as a major right‐lateral strike

slip fault zone has variably been inferred to have occurred as
early as ∼2.4 Ma based on a slip rate of 10 mm/yr [Sharp,
1981; Rockwell et al., 1990] and a total offset of 24 km
[Sharp, 1967], to 1.5 Ma [Morton and Matti, 1993], to as
recently as ∼1.1 Ma [Lutz et al., 2006; Kirby et al., 2007].
For the northern SJFZ, Morton and Matti [1993] suggest
an initiation age of 1.5 Ma from sedimentologic changes in
the upper San Timoteo Formation deposited adjacent to the
SJFZ, dated by a rodent tooth fossil identified as Microtus
Californicus. In the central SJFZ, using the best‐estimated
late Quaternary slip rate of 10–14 mm/yr [Rockwell et al.,
1990], one can infer an inception age of 1.7–2.4 Ma based
on the 24 km of bedrock displacement, although this assumes
the slip rate has been fairly constant since inception. For the
southern SJFZ, a 1.05–1.07 Ma initiation age has been sug-
gested based on dramatic changes in basin dynamics inferred
from sedimentary rocks [Lutz et al., 2006;Kirby et al., 2007].
Based on a magnetic reversal located between two non‐
conformable stratigraphic units, the Ocotillo and Borrego
Formations, the initial progradation of sediment beginning
at ∼1.1 Ma is interpreted as evidence for initiation of faults
in the Salton Trough [Lutz et al., 2006; Kirby et al., 2007].
[8] Published mid‐to‐late Quaternary slip rate estimates

along the SJFZ are also quite variable. Along the Clark fault
strand at Anza, Sharp [1981] estimated a minimum mid‐

Quaternary to present slip rate of 8–12 mm/yr by re-
constructing monolithologic alluvial fan deposits to their
source (Figure 2 and Table 1). Southward, along the Coyote
Creek fault strand, a mid‐Quaternary to present rate of 10 ±
3 mm/yr has been suggested from clasts displaced ∼6 km
from their source [Dorsey, 2002]. However, the inferred
offset by Dorsey [2002] 1) does not account for possible
along‐fault transport of these clasts, which would lower the
amount of slip and 2) is greater than the total bedrock offsets
of 4.8 km and 3.5 km inferred by Sharp [1967] and Janecke
et al. [2008], respectively; it thus likely represents an upper
limit for the mid‐Quaternary slip rate of the Coyote Creek
fault strand. For the late Quaternary, along the northern
section of the SJFZ, in the San Timoteo badlands, a horizontal
slip rate of at least 20 mm/yr was indirectly estimated from
luminescence dating of uplifted terraces along a restraining
bend in the fault; this estimate was obtained combining
terrace uplift rates with an elastic‐half‐space model of defor-
mation (Table 1) [Kendrick et al., 2002]. In contrast to a fast
slipping northern SJFZ, Wesnousky et al. [1991] used 14C
and an offset channel margin to determine a minimum latest
Holocene rate of 1.7–3.3 mm/yr from what is considered the
main strand of multiple fault strands. The only late Quaternary
slip rates published on the central section of the SJFZ are
from the Clark fault strand near Anza [Rockwell et al., 1990].
Based on 14C dating of an offset fan deposit Rockwell et al.
[1990] obtained a slip rate of > 9 ± 2 mm/yr since 9.5 ka.
Using soil development on offset alluvial deposits, they deter-
mined slip rates of 11 +9/−5 mm/yr since ∼14 ka, 12 +9/−5 mm/yr
since ∼17 ka, and 13 +10/−6 mm/yr since ∼48 ka. Additionally,
a long paleoseismic record from Anza at Hog Lake shows
that earthquakes recur frequently and are strongly clustered in
time [Rockwell et al., 2005]. Based on 14C ages and paleo-

Table 1. Published Slip Rates for the San Jacinto Fault Zone

Time Frame Reference Slip Rate Notes

Geodetic Bennett et al. [1996] 9 ± 2 mm/yr GPS & elastic block model of crustal deformation.
Bennett et al. [2004] 8 ± 4 mm/yr Co‐dependent slip history model

from published slip rates.
Becker et al. [2005] 15 ± 1 mm/yr GPS & stress‐field orientations from earthquake

focal mechanisms.
Meade and Hager [2005] 12 ± 1 mm/yr GPS & block model of crustal deformation.
Fay and Humphreys [2005] 15 ± 1 mm/yr GPS & block model of crustal deformation.
Fialko [2006] 21 ± 1 mm/yr InSAR & GPS.
Lundgren et al. [2009] 12 ± 9 mm/yr (Clark strand) InSAR, GPS & earthquake cycle.

12 ± 9 mm/yr (Coyote Creek strand)
Latest Holocene Sharp [1981] 2 ± 1 mm/yr (Coyote Creek strand) Offset of AD 1650 shoreline of Lake Cahuilla.

Wesnousky et al. [1991] >1.7–3.3 mm/yr Offset channel margin and 14C dating.
Rockwell [2008] 12–15 mm/yr 5‐event cluster of activity from AD 1025 to AD 1360.

Late Quaternary Rockwell et al. [1990] > 9 ± 2 mm/yr Minimum offset along a shutter ridge since
9.5 ka from 14C.

11 +9/−5 mm/yr Channel inset into Q3b (∼14 ka soil age)
terrace offset 150 ± 30 m

12 +9/−5 mm/yr Channel inset into Q4 (∼17 ka soil age)
terrace offset 210 ± 20 m

13 +10/−6 mm/yr Channel inset into Q5 (∼50 ka soil age)
terrace offset 620 ± 40 m.

Kendrick et al. [2002] ∼20 mm/yr Dextral slip rate estimated from elastic model of
uplift rates along restraining fault bend.

Mid‐Quaternary Sharp [1981] 10 ± 2 mm/yr 5.7 to 8.6 km offset of an alluvial fan deposit
overlying the 760 ka Bishop Ash at Anza.

Morton and Matti [1993] 16 mm/yr Inception of faulting at 1.5 Ma and 23 ± 1 km
displacement from Sharp [1967].

Dorsey [2002] 10 ± 3 mm/yr (Coyote Creek strand) Inception of faulting at 600 ka and 6 km
approximate displacement.
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seismic investigations, Rockwell et al. [2005] and Rockwell
[2008] estimate a late Holocene slip rate of 12–15 mm/yr
by combining an average return period of ∼230 years over
the past 4000 years with surface displacement from the last
two ruptures at Anza (3–4 m per event).
[9] Different geodetic models of strain accumulation

across the southern SJFZ also imply a wide range of slip rate
estimates. Block models of GPS data from the southern
SJFZ indicate slip rates of 9–15 mm/yr (Table 1) [Bennett et
al., 1996; Becker et al., 2005; Meade and Hager, 2005],
which is consistent with a 14–15 mm/yr slip rate estimate
inferred from elastic and viscoelastic models of crustal
deformation (Table 1) [Fay and Humphreys, 2005]. In
contrast, the results of a study by Fialko [2006], combining
interferometric satellite synthethic aperture radar (InSAR)
data with an elastic deep slipping SJFZ suggest a slip rate of
21 ± 1 mm/yr along the southern part of the fault zone,
although this rate probably includes the strain accommo-
dated by folding and NE‐striking cross‐faults. Similarly
high rates are implied by more recent work of Lundgren et
al. [2009], combining InSAR with geodetic data and models
of the earthquake cycle to infer slip rates of 12 ± 9 mm/yr
for each, the Coyote Creek and the Clark fault strands of the
southern SJFZ.
[10] The ambiguity in the slip rate budget and initiation

age for what might be the main plate boundary structure has
implications for understanding the tectonic evolution of
transform plate boundaries, and for kinematic fault models
used to assess earthquake hazards in southern California.
Kinematic models that attempt to explain temporal vari-
ability suggest a trade‐off in slip rates between faults,
implying that when one is fast the other is slow, thus the net
rate should approach that of the plate boundary [Sharp,
1981; Bennett et al., 2004]. Other kinematic fault models
assume a constant slip rate along the entire length of a fault.
However, mechanical models of faults show a systematic
relationship between fault length and displacement with
displacement decreasing toward the fault tip [Cowie and
Scholz, 1992]. Thus, the range in slip rate estimates for
the SJFZ could suggest that 1) the slip rate of the SJFZ may
have decreased since its initiation, 2) faulting may have
initiated earlier than 1.1 Ma [Lutz et al., 2006; Kirby et al.,
2007], 3) a slip rate gradient may exist along the SJFZ, or 4)
some previously published slip rate estimates may have
been compromised by insufficiently constrained ages or
displacements.

3. Methods

[11] Landforms along the Clark fault strand were mapped
in the field using 1:5,000 and 1:10,000 scale contour maps
constructed from high‐resolution topography of the ‘B4’
Airborne Laser Swath Mapping (ALSM) experiment [Bevis
et al., 2005]. Following an initial reconnaissance survey,
two sites (Rockhouse Canyon and the southern Santa Rosa
Mountains) were chosen for a more detailed study, based on
the following criteria: displaced landforms exhibited little
post‐depositional degradation, offsets were well defined,
and suitable lithologies for 10Be dating were present. At the
northwestern site, in Rockhouse Canyon, the deflected
modern channel (Channel 3) and two older beheaded
channels (Channels 1 and 2) immediately SW of the fault

were sampled for 10Be dating. From each channel, we col-
lected ∼600 g samples from the top 1–3 cm of 7–9 quartz‐
bearing boulders. Samples collected from Channel 2 are
from imbricated boulders lodged within relict bars that we
interpret to have been deposited by debris flows. From
Channel 1, due to the lack of preservation of imbricated
deposits, five samples were collected from large, isolated
boulders in the channel thalweg (samples Sjac 18–21 and 24)
and four samples from boulders present on a relict alluvial
terrace deposit ∼1–2 m above the channel bottom (samples
Sjac 14–17). To correct for inheritance, we collected sam-
ples from the top ∼2 cm of boulder tops in the thalweg of
Channel 3, with individual samples collected from boulders
spaced ∼100 m apart. At the southeastern site, in the southern
Santa Rosa Mountains, we collected six ∼500 g samples of
quartz‐bearing gravels and pebbles along a 2 m depth profile
within an offset alluvial fan deposit. The depth profile was
collected from a recently incised natural cliff exposure after
removing the outer ∼0.2 m of sediment.
[12] The 250 to 500 mm size fraction of the crushed and

sieved samples was chemically leached in the cosmogenic
dating laboratories at the University of Cincinnati and
Stanford University by a minimum of four acid leaches: one
aqua regia leach; two high concentration (2–5%) HF/HNO3

leaches; and one or more low concentration (1%) HF/HNO3

leaches. To remove acid‐resistant and mafic minerals, heavy
liquid separations with lithium heteropolytungstate (LST,
density 2.7 g/cm3) were used after the first 5% HF/HNO3

leach. Low background 9Be carrier (10Be/9Be ∼1 × 10−15)
was added to the purified quartz, which was then dissolved
in concentrated HF and fumed with perchloric acid. Fifteen
to fifty grams of quartz was assumed for determining acid
volumes used in the processing of chemical blanks. Next,
the samples were passed through anion and cation exchange
columns to separate the Be fractions. Ammonium hydroxide
was added to the Be fractions to precipitate beryllium
hydroxide gel. The beryllium hydroxide was oxidized by
ignition in quartz crucibles at 750°C to produce beryllium
oxide. Beryllium oxide was then mixed with niobium
powder and loaded in steel targets for the measurement of
the 10Be/9Be ratios by accelerator mass spectrometry at the
CAMS at the Lawrence Livermore National Laboratory or
at the PRIME Laboratory at Purdue University.
[13] All 10Be model ages for sampled boulders were cal-

culated using the CRONUS Age Calculator [Balco et al.,
2008; http://hess.ess.washington.edu/math/] (Table 2). No
correction was made for geomagnetic field variations due to
the ongoing debate regarding which, if any, correction fac-
tors are most appropriate. There also is considerable debate
regarding the use of appropriate scaling models [see Balco
et al., 2008] and we chose to use the time independent
model of Lal [1991] and Stone [2000] to calculate our ages.
However, we note that the different scaling models may
produce age differences of up to 11%. Uncertainties associ-
ated with the age of each sample are presented in Table 2,
these uncertainties include the internal (measured AMS
uncertainty based on Poisson counting statistics) [Gosse and
Phillips, 2001] and the 1 sigma external uncertainty (which is
the total uncertainty associated with the method [Gosse and
Phillips, 2001; Balco et al., 2008]).
[14] Landform exposure ages are affected by geologic

factors, which include inheritance of 10Be by prior exposure,
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toppling and exhumation of boulders, and weathering of
boulders and alluvial fan surfaces. To estimate inheritance
of 10Be from hillslope residence and transport we collected
7 samples from boulders in the active channel 3. Not
accounting for such inheritance would result in incorrectly
old ages and lower slip rates. We assume that the sampled
boulders have been exposed at least since the time the
channels were abandoned. Our field observations suggest
little to no exhumation of boulders by winnowing of sur-
rounding finer deposits. We also assume that streams from a
source area northeast of the Clark fault strand transported all
the boulders that were sampled and that none of the sampled
boulders originated from more recent collapse of hillslopes
adjacent to the sample sites. To explore the potential effects
of boulder weathering, we also calculated 10Be exposure
ages that account for 2m/Myr and 5m/Myr of surface attri-
tion. These rates of erosion, if present, would result in
modestly decreased slip rates as compared to the case of no
boulder surface erosion.

4. Results

4.1. Rockhouse Canyon

[15] The Rockhouse Canyon site is located along the
western range front of the Santa Rosa Mountains at the

northernmost end of Clark Valley in the Anza Borrego
desert (Figure 2). At Rockhouse Canyon, strike‐slip fault
activity is mostly localized onto a single strand displaying
channels in various stages of capture (Figure 3). Two
channels (Channel 1 and Channel 2) are completely be-
headed from their source and no longer transporting large
boulders (Figure 3 and auxiliary material).1 Contained
within these channels are boulder bar deposits, fan deposits,
and isolated boulders, which could only have originated
from the present‐day drainage areas located to the northeast
of the fault (Figure 3). Realignment of Channel 1 and
Channel 2 indicates displacement of 500 ± 70 m and 220 ±
70 m, respectively (Figure 3b). To realign the beheaded
channels along the fault, we used contour maps derived
from high‐resolution topography to assess the maximum
and minimum displacement from two drainage areas that
could supply large boulders into the channel (Figure 3b).
The midpoint between the maximum and minimum distance
is then used for the offset and the uncertainties associated
with the displacement are based on the maximum and
minimum distance permitted to realign the channels to their
source (Figure 3).

Figure 3. (a) ALSM image of the Rockhouse Canyon site. Frame shows the location of Figure 3b.
(b) Location of beheaded and deflected channels at Rockhouse Canyon: (left) the present‐day configura-
tion of Channels 1, 2 and 3; (middle) the reconstruction for Channel 2; and (right) the reconstruction for
Channel 1. The black solid lines indicate the maximum and minimum displacements from the source drain-
age(s) for offset channels. The dots in Figure 3b indicate the location of boulder samples collected for 10Be
exposure dating. See Figure 2 for location.

1Auxiliary materials are available in the HTML. doi:10.1029/
2009JB006346.
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[16] To define the ages of these displacements, we
determined 10Be exposure ages of 8 to 9 boulders in each of
the beheaded channels, and of 7 boulders in the active
channel; the resulting 24 sample ages are presented in
Table 2 and Figure 4. The error‐weighted mean of the
individual boulder ages from the active channel, 7.3 ± 3.0 ka,
was used to infer the inheritance of 10Be produced during
exposure and transport prior to boulder deposition in each
channel. We note that this inheritance only defines prior
exposure of 10Be from the larger source area. The age of
abandonment for each of the two beheaded channels is the
error‐weighted mean age of the individual boulder ages from
the channel minus the 7.3 ± 3.0 ka inheritance age obtained
from the active channel. This yields ages of 47 ± 8 ka for
Channel 1, and 28 ± 9 ka for Channel 2 (age uncertainties
given as the 95% confidence interval based on the 2‐sigma
external error associated with 10Be model ages (Table 2)).
The age of one sample from Channel 1 (Sjac‐17) was dis-
carded because it is outside the 95% confidence interval of
the average calculated from the remaining 8 exposure ages
determined for this channel (Table 2 and Figure 4). The
clustering of modeled 10Be ages from individual boulders in
each channel, combined with the dichotomy of ages between
channels, gives us confidence that the boulders were likely
transported and deposited in discrete subsequent episodes by
one or both of the potential source streams (Table 2 and
Figures 3 and 4).
[17] Fitting a single slip rate through both channel offsets

versus their age yields an average late Quaternary to present
slip rate of 8.9 ± 2.0 mm/yr for the Clark fault strand at
Rockhouse Canyon. This rate is the error‐weighted linear
least squares fit of both the displacement and age, with
uncertainty calculated at the 95% confidence interval.
Because minor erosion of the boulder surface is permissible
from field observations, we also calculated ages assuming
2 m/Myr and 5 m/Myr of boulder surface erosion, yielding
lower slip rates of 7.8 ± 1.8 mm/yr, and 6.1 ± 1.4 mm/yr,
respectively. Differencing the raw mean boulder ages (with
no erosion) and displacements of Channel 1 from Channel 2

yields a significantly faster slip rate of 14.4 ± 3.4 mm/yr
over the time interval from ∼30–50 ka, followed by a slower
rate of 7.7 ± 3.6 since ∼30 ka. These two slip rates from
the same site could indicate temporal variation of the slip
rate on the Clark fault strand over the latest Quaternary.
However, at this time we cannot discriminate this appar-
ent temporal variation from a constant slip rate with
confidence.

4.2. Southern Santa Rosa Mountains

[18] The southern Santa Rosa Mountains site of the Clark
fault strand is located at the mouth of Rattlesnake Canyon
on the southwestern range front of the Santa Rosa Moun-
tains. Just to the southeast of this locality, the dextral Clark
fault strand bends to the south into a set of normal‐fault
(horsetail) splays (Figure 5). Alluvial fans emplaced across
the Clark fault strand originate from the Santa Rosa Moun-
tains plutonic and cataclastic zones, which are predominately
comprised of tonalite, marble, and mylonitic gneiss [Dibblee,
1954; Sharp, 1967]. Using the nomenclature of Bull [1991]
we map a Q2c alluvial fan surface that has been cut by
dextral Clark fault slip. The alluvial fan surface at this site
exhibits muted bar and swale microtopography, moderate
desert pavement, and a slightly undulating surface morphol-
ogy. Clasts on the surface display moderate to strong desert
varnish development and strong rubification on their under-
sides. The Av soil horizon of the Q2c surface is ∼1 cm thick
and overlies a relic A horizon, that presumably formed
before the Holocene, as the site is now in a hyper arid soil
moisture regime. These observations imply that there has
beenminimal denudation or aggradation of the surface during
the extremely arid local climate of the past 8–12 ka.
[19] The fan surface is cut by multiple fault strands, but

only one of these shows significant dextral offset. The
displacement along this strand is estimated as 51 ± 9 m
(Figure 5 and auxiliary material), using a beheaded channel
(Channel 1) and two deflected channels (Channels 2 and 3)
as piercing lines (Figure 5). To reconstruct this offset, we

Figure 4. Chart showing the error‐weighted mean age of Channel 1, Channel 2 and Channel 3. 10Be
surface exposure ages of boulders from Channel 1 and Channel 2 do not include inheritance from
Channel 3. The gray and black vertical bars are ages of individual boulder samples used in calculating
the age of each channel. The inset shaded box within each vertical bar is the 10Be model age and associated
internal uncertainty with the AMS measurement. The white vertical bar is an outlier that is outside the 95%
confidence interval of the remaining 8 samples from Channel 1. Please see text and Table 2 for details.
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used contour maps derived from high‐resolution topogra-
phy and field measurements to assess the maximum and
minimum distance that would permit all three channels to
align. We note that Channel 3 has two potential upstream
piercing lines northeast of the fault (Figure 5). However,
we choose to realign Channel 3 with the more eastern drainage
area and not the midpoint of the two northeast sources because
doing sowould causemis‐alignment of Channels 2 and 3. The
uncertainty associated with the offset is based on the maxi-
mum and minimum distance permitted to realign all three
channels. This distance is minimized by lining up the thalweg
and wall (9 m width) of beheaded Channel 1 on both sides of
the fault (Figure 5).
[20] To determine the slip rate, we dated the fan surface

using 10Be concentrations from a 2 m‐deep vertical stream‐
cut exposure. The age was determined from the slope
of a linear least squares fit of 10Be concentration versus
exp(‐z/z*), where z is depth and z* is the depth where 10Be
production declines by 1/e (Figure 6). The intercept of this
line with zero (i.e., infinite depth) yields an estimate of the
10Be inheritance of the sediment. This implies a 10Be depth
profile age of 35 ± 7 ka (95% confidence) for the displaced
fan surface, yielding a slip rate of 1.5 ± 0.4 mm/yr (Table 2
and Figure 6). The uncertainty associated with the slip rate is
the root mean squared error for both age and offset. Although
a robust method to deduce the 10Be surface concentration

[Anderson et al., 1996; Repka et al., 1997], ages determined
from the depth profile may be subject to erosion that will
reduce the apparent surface age. However, soil character-
istics from the displaced Q2c surface imply that minimal

Figure 6. Field photo and graph of the exponential
decrease in the concentration of 10Be with depth from an
alluvial surface cut by the Clark fault at the southern Santa
Rosa Mountain locality. The dashed black lines indicate
the 95% confidence interval around the black regression
line. Vertical dotted lines represent the inheritance and
its associated errors. The regression line indicates a surface
age of 35 ± 7 ka.

Figure 5. ALSM image of the southern Santa Rosa Mountains site. (a) The present‐day configuration of
3 channels incised into the Q2c surface. Inset is a fault map showing traces of the Clark fault in Figure 5a.
(b and c) The present‐day configuration of beheaded and deflected channels incised into the Q2c fan
deposit. The white star in Figure 5c is the location of the 2 m deep depth profile sampled for 10Be surface
exposure age dating. (d) The reconstruction of a beheaded channel (Channel 1) and two deflected (Chan-
nels 2 and 3) for 35 ± 7 kyr ago. Please see text and Table 2 for details.
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surface lowering has occurred since 8–12 ka, giving us
confidence that our modeled age is reliable and has not been
modified by major surface lowering, at least during the
Holocene.

5. Discussion

[21] Our new data allow us to compare slip rate estimates
over the same time interval (30–50 ka) along the Clark fault
strand of the SJFZ from Anza to the southern Santa Rosa
Mountains. Since ∼30–50 ka, our results show a pronounced
southward slip rate decrease along the Clark fault strand. The
∼13 mm/yr late Quaternary rate at Anza [Rockwell et al.,
1990] decreases southeastward to 8.9 ± 2.0 mm/yr at Rock-
house Canyon and to 1.5 ± 0.4 mm/yr at the southern Santa
Rosa Mountains (Figure 2). This southward gradient in slip
rate along the Clark fault strand is consistent with a similar
decrease in slip per event for the past several events, as
documented from small channel offsets [Middleton, 2006;
W. B. Bull, personal communication, 2008]. This decrease
is also consistent with the decrease in total bedrock dis-
placement [Sharp, 1967] from Anza (22–24 km) to Rock-
house Canyon (14.5 to 17 km) (Figure 2). Farther southeast,
toward the southern Santa Rosa Mountains, the total bed-
rock displacement has been estimated to be similar to that at
Rockhouse Canyon (∼14.5 km) [Sharp, 1967], but because
the offset cataclasite marker is as much as 5 km away from
the main fault strand (Figure 2) this estimate is less well
constrained. The consistent decrease in total bedrock offset
and slip rate between Anza and Rockhouse Canyon can be
attributed to a transfer of slip onto the adjacent Coyote Creek
fault strand (Figure 2) [Sharp, 1967]. A plausible explanation
for the more dramatic decrease in slip rate from Rockhouse
Canyon to the Santa Rosa Mountains is that much of the
deformation has been absorbed by young and active distrib-
uted deformation in the Borrego Badlands basin, where slip
has juxtaposed thick sediments of the Salton Trough against
bedrock of the Santa Rosa Mountains (Figure 2) [Belgarde
and Janecke, 2006], and some displacement may also be
taken up by the Coyote Mountain and Inspiration Point faults
(Figure 2). Overall, the Clark fault strand exemplifies how
slip rates are not maintained along the entire length of faults
and that considerable strain may be accommodated in a dis-
tributed manner, especially near the fault tip [Cowie and
Scholz, 1992]. Gradients in slip rate appear to be especially
dramatic where faulting juxtaposes sedimentary rocks [Cowie
and Scholz, 1992].
[22] The strong correlation between total bedrock dis-

placement and our late Quaternary slip rates along the Clark
fault strand between Anza and Rockhouse Canyon leads to
interesting speculations on fault system behavior. Assuming
that fault slip rates have been constant since fault inception,
our rates are slower than required by the ca. ∼1.1 Ma
inception of dextral faulting proposed for the Salton Trough
by Lutz et al. [2006] and Kirby et al. [2007]. Conversely, if
we combine bedrock displacements and slip rates at Anza
(22–24 km and ∼12–15 mm/yr, respectively) and Rock-
house Canyon (14.5 to 17 km and 8.9 ± 2.0 mm/yr,
respectively), we would estimate the age of fault initiation at
both sites as 1.8 ± 0.5 Ma. This earlier onset, which is
consistent with constraints from the San Timoteo badlands
[Morton and Matti, 1993] could also be permitted in the

Salton Trough if some slip on the Clark fault accrued prior
to the dramatic stratigraphic transition documented by Lutz
et al. [2006] and Kirby et al. [2007]. A 1.8 ± 0.5 Ma ini-
tiation age of the SJFZ is also consistent with thermo-
chronologic studies from the San Bernardino Mountains at
Yucaipa Ridge, which are thought to have uplifted con-
temporaneously with initiation of the SJFZ [Morton and
Matti, 1993; Spotila et al., 2001] and show rapid exhuma-
tion since ∼1.8 Ma (U‐Th/He apatite age) [Spotila et al.,
2001]. Alternatively, slip rates at both Anza and Rockhouse
Canyon may have decreased together in the late Quaternary.
This would suggest that the mechanism responsible for the
trade‐off in slip from the Clark fault strand to the Coyote
Creek fault strand acts independently of the rate of strain
accumulation across the entire southern SJFZ.
[23] The slip rate estimates presented in this study support

a consistent overall rate of strain accumulation across the
southern SJFZ of 10 to 14 mm/yr over the late Quaternary.
Taking our late Quaternary rate from Rockhouse Canyon
(8.9 ± 2.0 mm/yr) as representative of the current slip rate of
the southern Clark fault strand, and combining this with
previously published Holocene slip rates for the Coyote
Creek fault strand (∼1–5 mm/yr [Clark, 1972; Sharp, 1981;
Pollard and Rockwell, 1995]), suggests that the southern
SJFZ accommodates ∼10 to 14 mm/yr of plate boundary
motion. This rate is similar to the combined slip rates of the
Superstition Mountain fault (5–9 mm/yr [Gurrola and
Rockwell, 1996]) and Superstition Hills fault (3–6 mm/yr
[Hudnut and Sieh, 1989]) as well as the slip rate near Anza
where the Clark fault is essentially the single strand of the
SJFZ [Sharp, 1981; Rockwell et al., 1990; Rockwell, 2008].
Combining slip rates across a transect from the southern
Santa Rosa Mountains locality (1.5 ± 0.4 mm/yr) with pre-
viously determined Holocene slip rates for the Coyote Creek
fault (∼1–5 mm/yr) implies a southward slip rate decrease
across the southern SJFZ, from ∼10–14 mm/yr in its central
portion to ∼2–7 mm/yr near the fault at the latitude of the
Borrego and Fish Creek badlands (Figures 1 and 2); however,
the residual strain in this region is presumably accommo-
dated through folding and thrusting in the adjacent Borrego
Badlands basin [Belgarde and Janecke, 2006]. Farther
south, the entire 8–15 mm/yr may be accommodated by slip
along the Superstition Hills and Superstition Mountain faults
[Gurrola and Rockwell, 1996; Hudnut and Sieh, 1989], at
least in the Holocene. Comparing these results with the
15.9 ± 3.4 mm/yr slip rate determined over the same late
Quaternary time interval for the Indio segment of the San
Andreas fault [van der Woerd et al., 2006] suggests that the
SJFZ is probably subordinate to the southern San Andreas
fault zone, although it is also possible (within uncertainties)
that deformation is partitioned fairly evenly between the
two. The remaining plate boundary strain in this region is
likely taken up by the Elsinore fault, the Eastern California
Shear Zone, NE‐striking cross‐faulting, and locally distrib-
uted folding and thrusting.
[24] Our slip rate estimates for the Clark fault strand show

pronounced spatial variability, and possible temporal vari-
ability of fault slip rates along the southern San Andreas
fault system during the late Quaternary. This, in turn, sug-
gests a complex kinematic evolution, which may explain
apparent discrepancies between slip rate estimates obtained
from geologic and geodetic data. Our results are at odds
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with combined InSAR and GPS data, which suggest much
higher slip rates for the southern SJFZ [Fialko, 2006;
Lundgren et al., 2009], but consistent with GPS block
models, as well as elastic and viscoelastic models of crustal
deformation in this region [Bennett et al., 1996; Meade and
Hager, 2005; Becker et al., 2005; Fay and Humphreys,
2005]; the large differences of these geodetically derived
slip rates may result from differences in modeling ap-
proaches, or temporal and spatial coverage of the geodetic
data. Seismic hazard studies commonly rely on long‐term
Quaternary rates to infer short‐term hazard. Our observa-
tions suggest that information at many different localities
along a fault and over multiple time frames is needed to
adequately construct kinematic models and to better assess
earthquake hazards along evolving plate margins.

6. Conclusion

[25] The Clark fault strand of the southern SJFZ displays a
pronounced southeastward decrease in late Quaternary slip
rate. 10Be exposure ages of 47 ± 8 ka and 28 ± 9 ka for two
beheaded channels and 35 ± 7 ka for a displaced alluvial
deposit imply slip rates of 8.9 ± 2.0 mm/yr at Rockhouse
Canyon and 1.5 ± 0.4 mm/yr for the southern Santa Rosa
Mountains. This gradient in slip rate must be largely
accommodated by distributed deformation within the Salton
Trough and the transfer of slip to the Coyote Creek fault
strand. Our results show that, at least for the past ∼30–50 kyr,
the SJFZ may have been equivalent, but more likely was
subordinate, to the southern San Andreas fault in accommo-
dating plate margin strain. This suggests that either the slip
rate of the San Jacinto fault has decreased since its initiation
or faulting began earlier than 1.1 Ma.
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