The Xenoestrogen Bisphenol A Inhibits Postembryonic Vertebrate Development by Antagonizing Gene Regulation by Thyroid Hormone

Rachel A. Heimeier, Biswajit Das, Daniel R. Buchholz, and Yun-Bo Shi

Section on Molecular Morphogenesis (R.A.H., B.D., Y.-B.S.), Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; and Department of Biological Sciences (D.R.B.), University of Cincinnati, Cincinnati, Ohio 45221-0006

Bisphenol A (BPA), a chemical widely used to manufacture plastics, is estrogenic and capable of disrupting sex differentiation. However, recent in vitro studies have shown that BPA can also antagonize T₃ activation of the T₃ receptor. The difficulty in studying uterus-enclosed mammalian embryos has hampered the analysis on the direct effects of BPA during vertebrate development. This study proposed to identify critical T₃ pathways that may be disrupted by BPA based on molecular analysis in vivo. Because amphibian metamorphosis requires T₃ and encompasses the postembryonic period in mammals when T₃ action is most critical, we used this unique model for studying the effect of BPA on T₃-dependent vertebrate development at both the morphological and molecular levels. After 4 d of exposure, BPA inhibited T₃-induced intestinal remodeling in premetamorphic Xenopus laevis tadpoles. Importantly, microarray analysis revealed that BPA antagonized the regulation of most T₃-response genes, thereby explaining the inhibitory effect of BPA on metamorphosis. Surprisingly, most of the genes affected by BPA in the presence of T₃ were T₃-response genes, suggesting that BPA predominantly affected T₃-signaling pathways during metamorphosis. Our finding that this endocrine disruptor, well known for its estrogenic activity in vitro, functions to inhibit T₃ pathways to affect vertebrate development in vivo and thus not only provides a mechanism for the likely deleterious effects of BPA on human development but also demonstrates the importance of studying endocrine disruption in a developmental context in vivo. (Endocrinology 150: 2964–2973, 2009)

Endocrine disruption by environmental contaminants poses a great concern for global ecology and human health. Endocrine disrupting compounds (EDCs) have been defined as exogenous substances that alter function(s) of the endocrine system and consequently cause adverse health effects in an intact organism, or its progeny, or (sub)populations (1–3). Some EDCs act as antiestrogenic and antiandrogenic agents to affect reproductive function and sexual development (4), suggesting that EDCs are responsible for the increased appearance of reproductive health problems in both human and wildlife. In humans, the trend for increased breast and testicular cancers, reduced sperm counts, and early puberty has been attributed to increased exposure to EDCs (5–7). In wildlife, decreased species populations and increased animal malformations, including feminization and hermaphroditism, have been reported worldwide (8–11). There is also increasing concern that EDCs may affect other endocrine systems, such as the T₃ system.

T₃ plays a central role in vertebrate development, growth, and metabolism (12–18). The effects of EDCs on T₃ signaling will undoubtedly pose a threat to human and wildlife health (19–22). Keyed by the discovery of nuclear T₃ receptors (TRs) that function as transcription factors, recent advances have been made in examining the mechanisms of T₃ action at the molecular level (12, 13, 15, 23–31). Concurrently, studies have also revealed a broad array of EDCs that can bind to TR and affect T₃-regulated gene expression in vitro (32). However, the lack of a suitable in vivo model to study EDCs’ effects on TR function in vertebrate development impedes our understanding on whether and how

Abbreviations: BMP, Bone morphogenetic protein; BPA, bisphenol A; DMSO, dimethyl sulfoxide; EDC, endocrine disrupting compound; EF-1α, elongation factor-1α; ER, estrogen receptor; MMP, matrix metalloproteinase; rp18, ribosomal protein L8; qRT-PCR, quantitative RT-PCR; RXR, retinoid X receptor; ST3, stromelysin-3; T(V)ZIP, T₃-responsive basic leucine zipper transcription factor; TIMP, tissue inhibitor of metalloproteinase; TR, T₃ receptor.
persistent exposure to these bioaccumulative compounds affects human health.

One such compound is bisphenol A (BPA), an established EDC of the reproductive system. BPA is used in the production of plastics and has widespread applicability, making its manufacturing and processing an important economical factor as well as a source of BPA release into the environment (33–40). BPA studies have primarily focused on its estrogenic activity (4, 41). Recently based on extensive review of the existing data, the National Toxicology Program of the National Institutes of Health raised concerns for neural and behavioral effects of BPA in fetuses, infants, and children at the currently allowed human exposures (www.niehs.nih.gov/news/media/questions/sya-bpa.cfm#2). The concerns from this reviewing panel were primarily focused on the estrogenic effects of BPA, even though the role of estrogens on mammalian neural development is unclear. On the other hand, neural and behavioral development is dependent on T3, raising the possibility that the developmental effects of BPA in humans may be manifested through the T3 pathway. Given the possible cross talks between the T3 and estrogenic pathways (42, 43), BPA may indirectly affect T3 signaling by influencing estrogenic pathways. On the other hand, in vitro studies have shown that BPA can bind to and antagonize T3 activation of TR (44), and a study using cultured mouse oligodendrocyte precursor cells found that BPA inhibited T3-induced differentiation (45). In addition, a study with rats showed that BPA exposure during development produced an endocrine profile similar to that observed in patients with T3 resistance syndrome (46).

The ability of BPA to bind to both estrogen and thyroid receptors to elicit disruption makes it very difficult to study the actions of BPA during mammalian development. Suitable alternative in vivo models are urgently needed to evaluate the effects of BPA on T3 function during development. Amphibian metamorphosis represents an attractive model due to its absolute dependence on T3 signaling by influencing estrogenic pathways. On the other hand, in vivo studies have shown that BPA can bind to and antagonize T3 activation of TR (44), and a study using cultured mouse oligodendrocyte precursor cells found that BPA inhibited T3-induced differentiation (45). In addition, a study with rats showed that BPA exposure during development produced an endocrine profile similar to that observed in patients with T3 resistance syndrome (46).

Here we propose the use of X. laevis larvae as a model to investigate whether and how BPA affects T3-dependent vertebrate development. To date, little molecular analyses have been carried out to determine how BPA affects either metamorphosis or other postembryonic developmental processes in vertebrates. Because changes in gene expression often precede morphological changes, we aimed to use microarray technology to determine the signaling transduction pathways underlying any metamorphic effects of BPA. We chose the intestine as the model system because it represents an organ that persists throughout metamorphosis but undergoes extensive but well-characterized remodeling (58, 59). It is important to note that gene regulation by T3 through TR is not only necessary but also sufficient for intestinal remodeling and other metamorphic processes (60).

Furthermore, because the metamorphic process can easily be manipulated by controlling the availability of T3 via the tadpole rearing water, the influence of maternal hormones and the difficulty to manipulate the uterus-enclosed mammalian embryo are avoided.

Our molecular analysis indicates that BPA, even though mainly known as an estrogenic compound, predominantly disrupts T3-signaling pathways during metamorphosis, resulting in delayed metamorphosis. Our results suggest that similar adverse effects of BPA on human development by disrupting T3 pathways is likely and argue for the importance of studying endocrine disruption in the developmental context in vivo. They also highlight the power of combining morphological and molecular analyses of amphibian metamorphosis for studying endocrine disruption in development.

Materials and Methods

Animals

Tadpoles of X. laevis used in this study were purchased from NASCO (Fort Atkinson, WI). The animals were exposed to a 12-h light, 12-h dark photoperiod (light on at 0700 h) and were fed spirulina, a fresh water algae, at 1000 h. Animal studies were approved by National Institute of Child Health and Human Development Animal Use and Care Committee.

Chemicals

T3, BPA, and dimethyl sulfoxide (DMSO) were purchased from Sigma (St. Louis, MO). All exposure treatments were conducted in 0.1% DMSO solution.

Oocyte injections and luciferase assays

Microinjection experiments were performed as described (61, 62). Briefly, a reporter construct, TRE-Luc, harboring the T3-dependent promoter driving the firefly luciferase reporter was microinjected (0.33 ng/oocyte) into the nuclei of X. laevis oocytes together with a plasmid harboring the control Renilla luciferase reporter. In vitro-transcribed mRNAs encoding TRβ and retinoid X receptor (RXR)-α were coinjected (1.15 ng/oocyte for TRβ and RXRα) into the cytoplasm. After overnight incubation in the presence or absence of BPA and/or T3, oocytes were assayed for luciferase activity.

Animal exposures to BPA

Experiment 1

BPA exposures were performed in a static-renewal system based on previous studies (51, 52, 56). Before exposure, test animals were acclimatized to laboratory conditions at 23–24°C for 24 h. During the acclimatization and exposure periods, the animals were not fed to eliminate dietary influence on metamorphosis progression (note that tadpoles undergoing metamorphosis or T3 treatment do not feed) (15). Ten premetamorphic X. laevis tadpoles (stage 54) were randomly transferred into 1-liter tanks containing dechlorinated water. Animals were subsequently exposed to conditions with 2 nM T3, 0.1 or 10 μM BPA, or the combination of 2 nM T3 and 0.1 or 10 μM BPA; the corresponding control group contained DMSO vehicle. The two concentrations of BPA used in this study are known to interfere with T3 action in vitro (44) and physiologically relevant for human infants (0–12 months) (within 24 h, estimated infant intake is 13 μg/kg body weight or 60 nM, calculated based on the assumption that: 1) BPA uptake is equivalent to BPA metabolized and excreted by the body within the 24 h and 2) BPA is equally distributed
Experiment 1

The expression levels of rpl8 and EF1α were normalized to those of the control gene, elongin C (Table S1) with cDNA standards made from tadpoles. The expression level of each gene was analyzed with SYBR Green I dye (supplemental material). Real-time quantitative RT-PCR (qRT-PCR) was carried out using FAM-labeled Taqman probes for some genes (supplemental Table S1) with cDNA standards made from tadpoles at stages 50–66. The expression level of each gene was normalized to that of the control gene, ribosomal protein L8 (rpl8). Additional genes were analyzed with SYBR Green I dye (supplemental Table S2), and the expression level of each gene was normalized to that of the control gene, elongation factor-1α (EF-1α). In a preliminary experiment, we observed that the levels of p88 and EF1α were not different in intestine samples from control and chemically treated tadpoles. For data analysis, intergroup comparisons were performed with ANOVA followed by Fisher’s protected least significant difference test; P ≤ 0.05 was considered to be statistically significant.

Histology

The intestines were dissected, flushed and fixed in Bouin’s fluid for 24 h, rinsed in 0.6× PBS and stored in 70% ethanol. Paraffin embedded
5-μm-thick sections were serially collected on glass slides and stained with hematoxylin-eosin.

Results

BPA suppresses T₃-induced transcription

BPA is known to bind to and antagonize T₃-dependent activation of mammalian TR (44). To investigate whether BPA influences X. laevis TR in vivo, we analyzed the effect of BPA on TR-dependent luciferase reporter (TRE-Luc) expression in the reconstituted frog oocyte system, a model to study T₃-mediated transcription in the context of chromatin (61). In the absence of T₃, overexpressed TRβ and RXRα repressed the promoter, as reported (62, 68), whereas in the presence of T₃, the promoter was activated (Fig. 1A). BPA inhibited the transcriptional activation of the promoter by T₃ but had little effect on the promoter in the absence of T₃ (Fig. 1A). In the absence of TRβ and RXRα, BPA had no significant effect on the promoter activity (data not shown). Thus, BPA may function as an inhibitor of gene activation by T₃ to affect X. laevis development.

BPA inhibits T₃-induced metamorphosis

To study the effect of BPA on development, premetamorphic tadpoles were treated with BPA, T₃, or a combination of both (Fig. 1, B and C). Gross morphology was monitored to determine the developmental stages every 3 d for a 21-d study period. Treatments of premetamorphic tadpoles with T₃ resulted in well-established morphological changes (15), and the inhibition of these changes by BPA could be observed as early as 3 d (Fig. 1B and supplemental Fig. S2). At the end of the 21-d study, T₃-treated animals had metamorphosed to stage 64, whereas the control animals reached only stage 56 (Fig. 1C). No significant stage difference was observed between control (DSMO) and BPA-treated animals. The tadpoles that were exposed to combined T₃ and BPA (T₃+BPA) were significantly delayed in metamorphosis compared with the T₃-treated animals, and this effect of BPA was dose dependent (Fig. 1B).

To study the effect of BPA on the remodeling of visceral organs during development, we analyzed the intestine, a model organ that has been well characterized morphologically and molecularly (58, 59, 63, 69). After 4 d of treatment, control intestinal cross-sections had thin muscle layers around the exterior, a thin layer of connective tissue, and a simple inner epithelium with hematoxylin-eosin. Representative control (A), BPA- (B), T₃- (C), and T₃+BPA (D)-treated tadpoles are shown. Note that the control, BPA, and T₃+BPA intestine remained largely typical of tadpole intestine, as seen by the presence of a thin muscle layer, little connective tissue, and little or no adult intestinal precursor cells. Histology of T₃-treated intestines revealed increased muscle layer thickness, proliferation of connective tissue, and the appearance of adult epithelial cells (the larval epithelial cells are surround by a yellow dashed ring, whereas the appearance of adult epithelial cells are represented between a black solid and the yellow dashed line). This experiment was repeated four times with similar results. Scale bar, 100 μm. AE, Adult epithelium; CT, connective tissue; LE, larval epithelium; Lu, lumen; M, muscle; Ty, typhlosole.

FIG. 2. In the presence of BPA, intestinal remodeling is delayed during T₃-induced metamorphosis as early as 4 d after treatment. Tadpoles of the same size and at the same stage (stage 54) were treated with T₃ to initiate the metamorphic process. Four days later, the intestines were isolated, fixed, and the sections stained with hematoxylin-eosin. Representative control (A), BPA- (B), T₃- (C), and T₃+BPA (D)-treated tadpoles are shown. Note that the control, BPA, and T₃+BPA intestine remained largely typical of tadpole intestine, as seen by the presence of a thin muscle layer, little connective tissue, and little or no adult intestinal precursor cells. Histology of T₃-treated intestines revealed increased muscle layer thickness, proliferation of connective tissue, and the appearance of adult epithelial cells (the larval epithelial cells are surrounded by a yellow dashed ring, whereas the appearance of adult epithelial cells are represented between a black solid and the yellow dashed line). This experiment was repeated four times with similar results. Scale bar, 100 μm. AE, Adult epithelium; CT, connective tissue; LE, larval epithelium; Lu, lumen; M, muscle; Ty, typhlosole.

BPA inhibits T₃-induced gene expression

To investigate whether BPA inhibits the expression of T₃ response genes, we first determined whether known T₃ response genes were affected by BPA. Total RNA was isolated from the intestine and qRT-PCR was performed. The expression of three early, direct T₃ response genes, TRβ, stromelysin-3 (ST3), and T₃-responsive basic leucine zipper transcription factor (TH/bZIP) was significantly higher in the T₃-treated tadpoles than the control or BPA-treated counterparts after 4 d (Fig. 3A). The expression level of ST3 and TH/bZIP were significantly reduced in the combined T₃+BPA group compared with the T₃-only group, although BPA had little effect on the T₃ induction of TRβ. The expression of two late, likely indirect T₃ response genes, matrix metalloproteinase (MMP)-2 and the tissue inhibitor of metalloproteinase (TIMP)-2, were also significantly reduced in the T₃+BPA-treated animals compared with the T₃-treated animals. The expression of the third late response gene, bone morphogenetic protein (BMP)-4, in the T₃+BPA-treated group was not significantly different from either the T₃-only or control group, although there was significant difference between the control and T₃-treated groups (Fig. 3B). (Note that because different T₃ response genes have different T₃ regulation kinetics, it is possible that TRβ and BMP4 are affected by BPA at different time points). These results suggest that BPA inhibits the expression of known T₃-response genes.

Downloaded from endo.endojournals.org at Nat Inst of Health Lib Acquisitions Unit on June 24, 2009
BPA predominantly affects T₃-signaling pathways in the intestine

To investigate whether BPA indeed inhibits T₃-induced metamorphosis by blocking the T₃-signaling pathways, we performed a genome-wide analysis by profiling gene expression in the intestine with a 60-mer oligonucleotide microarray (cDNA array). Because the phenotypes of BPA exposed tadpoles were similar with BPA at either concentration and reproducible, we performed the subsequent molecular analysis at the higher dose to detect the relatively small changes in gene expression caused by BPA. Total RNA was isolated from the intestine of tadpoles treated for 4 d with control solution (DMSO), BPA (10 μM), T₃ (2 nM), and combined T₃ (2 nM) + BPA (10 μM). For cDNA array analysis, we used a two-color labeling system, with Cy3-labeled experimental sample and Cy5-labeled universal control made of RNA isolated from whole animals of different metamorphic stages as the internal reference (supplemental Fig. S1). For each treatment group, three biological replicates, each consisting of 10 pooled intestine samples, were used. Quality control of the data were performed as previously described (63).

To identify significantly regulated genes, we performed ANOVA across all treatment groups with statistical significance of 10% false discovery rate with the fold change cutoff value set at 1.1 or greater for the regulated genes. Note that a relatively low cutoff was chosen because the effect of BPA on gene regulation was expectedly small. Because of the reproducibility of the cDNA array and the use of three biological replicates/treatment, it was possible to obtain statistically significant changes at this fold change cutoff. Of the 21,654 genes represented on the microarray, we found 1874 significantly regulated genes. There were 1051 and 728 genes significantly up- and down-regulated, respectively, in the T₃-treated intestines compared with the controls (Fig. 4, A and B, respectively; supplemental Tables 3 and S4, respectively). Many of the genes that were differentially regulated by T₃ after 4 d were similar to those reported previously (63) (data not shown). The gene regulation profiles of the T₃ and combined T₃ + BPA samples were remarkably similar. The highest number of shared regulated genes was recorded between these two groups, in which 716 and 567 genes were exclusively shared up- and down-regulated, respectively (Fig. 4, A and B, respectively). There were 293 up-regulated genes common to all three treatments (BPA, T₃, and combined T₃ + BPA) and 120 common down-regulated genes. Of the total number of regulated genes on the array, 211 of these genes were exclusively up-regulated and 168 of these genes were exclusively down-regulated in the BPA-only-treated group (supplemental Tables S5 and S6, respectively), suggesting that BPA can affect genes independent of the T₃ pathway during development.

Given the inhibitory effects of BPA on all aspects of T₃-induced metamorphosis, it seemed surprising that most of the up- or down-regulated genes in the T₃ group were also similarly affected in the T₃ + BPA-treated group in comparison with the controls (Fig. 4). However, as shown above, BPA only partially blocked the regulation of established T₃-response genes (Fig. 3). Thus, it is likely that BPA may globally attenuate the magnitude of T₃-regulation to inhibit metamorphosis. To test this, we analyzed the microarray data and compared the expression levels of individual genes between T₃- and T₃ + BPA-treated groups to identify T₃-dependent genes whose expression was affected by the presence of BPA. Of the 21,654 genes on the microarray, 342 genes had decreased expression in the presence of BPA in the T₃-treated intestines compared with T₃-only-treated animals (supplemental Table S7). Among these BPA down-regulated transcripts, most (62%) of these genes were identified as T₃-induced genes (compared with vehicle treated control), revealing an attenuation of T₃-dependent gene activation by BPA (Fig. 5A). The remaining down-regulated genes in the T₃ + BPA treatment group relative to T₃ alone could be subdivided into genes known to be down-regulated by T₃ (when compared with vehicle treated control) whose expression was now, in the presence of BPA, further repressed (22%) and genes whose expression did not have any known T₃ dependency (16%). To validate the repression of the T₃-induced genes by BPA, 10 of the genes were analyzed by qRT-PCR across all treatment groups with total RNA isolated independently from that used in the microarray. The BPA regulation of all selected genes was confirmed by qRT-PCR, of which nine are represented here (Fig. 5B).

In the presence of BPA + T₃, 159 genes had enhanced expression when compared with T₃ treatment alone (supplemental Table S8). Of these genes, 48% were down-regulated in the presence of T₃ (when compared with vehicle treated control),

FIG. 3. The relative expression of known T₃-inducible genes was reduced in the intestine of animals exposed to BPA. The cDNA was generated from total RNA of tadpoles treated as in Fig. 2 and subjected to qRT-PCR. A, Direct T₃-response genes ST3, THöZIP, and TRβ were examined. B, Late T₃-response genes MMP2, TIMP2, and BMP4 were examined. The results are expressed as fold induction of the transcript with respect to the control gene, rpl8. The expected increase in relative levels of transcript with respect to rpl8 was observed in the presence of T₃. For graphical presentation, results were expressed as fold induction as compared with the DMSO vehicle control. Data are shown as means ± se (n = 3; pooled samples of 10 intestines for each treatment). In the animals treated with T₃ + BPA, the expression levels of ST3, THöZIP, MMP2, and TIMP2 genes were significantly reduced in the intestine. An asterisk indicates significant differences in mRNA expression levels between T₃ and T₃ + BPA treatment groups (P ≤ 0.05).
revealing an abrogation of T₃-dependent gene repression by BPA (Fig. 5C). The remaining genes showing enhanced expression in the T₃ + BPA treatment group relative to T₃ alone, included genes known to be up-regulated by T₃ (when compared with vehicle treated control), which now in the presence of BPA were further enhanced (47%), and genes that did not have any known T₃ dependency (5%). Again, qRT-PCR was used to confirm the regulation of T₃-response genes by BPA as found by the cDNA array. Here four genes were analyzed by qRT-PCR, and their regulation by BPA was confirmed (Fig. 5D).

The above qRT-PCR results thus confirmed the findings from microarray analysis. More importantly, the microarray results demonstrate that BPA functions mainly by inhibiting T₃-pathways because most of the BPA-affected genes were T₃-response genes whose regulation by T₃ was attenuated by BPA.

The antimitamorphic effects of BPA are associated with inhibition of T₃-dependent gene regulation programs

Whereas the major effects of BPA is the inhibition of T₃ signaling pathways, it is possible that the antimitamorphic effects of BPA may be due to effects of BPA on genes independent of T₃. Thus, we analyzed the genes that were regulated by T₃ after 4 d of treatment. Of the total number of T₃ up-regulated genes (1051), 33% of these genes were down-regulated by BPA (data not shown). Conversely, of the total number of T₃ down-regulated genes (728), 36% of these genes were up-regulated by BPA (data not shown). Interestingly, when we ranked the T₃-induced genes from most dramatically regulated to the least regulated, we found that the majority of the 50 most dramatically T₃ up-regulated genes (≥2.5-fold induction by T₃) were inhibited by BPA (Fig. 6A). Similarly, the T₃ repression of most of the 50 dramatically T₃ down-regulated genes (≥1.9-fold repression by T₃) was reduced/abrogated by BPA (Fig. 6B). Moreover, by incorporating microarray data of T₃-responsive genes in the tail, hindlimb, and brain (64), we observed that the vast majority of these dramatically regulated genes that are also induced by T₃ in other organs were inhibited by BPA in the presence of T₃ (Fig. 6A). Conversely, of the 12 genes that are known to be down-regulated by T₃ in multiple organs, T₃ repression of seven genes was abrogated by BPA (Fig. 6B). These results suggest that BPA inhibits most of the genes highly up-regulated by T₃. The reason for our failure to detect BPA inhibition of genes less significantly up-regulated by T₃ was most likely because their regulation by T₃ was approaching the lower limit of the cDNA array analysis, thus making the regulation by BPA fall below the detection limit. Because gene regulation by T₃-bound TR is both necessary and sufficient for amphibian metamorphosis, these results suggest that BPA inhibits metamorphosis because it blocks most of the T₃-signaling pathways.

Discussion

In the present study, we characterized for the first time global gene expression changes associated with BPA exposure by using amphibian metamorphosis as our experimental model. This model was favorable over mammalian models because the in vivo screening process was quicker and the influence of maternal hormones and the difficulty in manipulating the uterus-enclosed embryo were eliminated. Whereas BPA was able to regulate many genes in premetamorphic tadpoles in the absence of T₃, there was no detectable morphologic phenotype, making it difficult to determine the significance. We thus focused our analysis on the effect of BPA during metamorphosis, i.e. when T₃ is also present. Our microarray analysis revealed novel findings. First, BPA inhibited the regulation of most T₃-dependent responsive genes, which presumably underlie the inhibition of metamorphosis by BPA, which was not evident from limited analyses in earlier studies. Second and more importantly, BPA predominantly affected T₃-signaling pathways during metamorphosis, although the influence of BPA on estrogen-signaling pathways in metamorphosing tadpoles cannot be dismissed. Our findings thus point to the critical need, even for EDCs of known effects, to have suitable developmental models to analyze the potential effects of EDCs on human embryonic and postembryonic development.

Of the two BPA concentrations used in this study, the lower concentration (0.1 µM) closely resembled the estimated BPA exposure level in human infants (see Materials and Methods). Both doses inhibited TRβ-induced transcription in the frog oocyte system. Furthermore, whereas the two doses ranged 100-fold, both inhibited T₃-induced metamorphosis reproducibly with the higher dose resulting in a more dramatic inhibition. These findings are in strong support that BPA acts as a T₃ antagonist in vivo.
Given that high levels of T₃ are critical for human development, especially during the late-embryonic and neonatal period that share many similarities with frog metamorphosis (12–14, 17, 19, 70, 71), our results argue that BPA represents a serious risk to human development through disruption of T₃ signaling pathways.

Using microarray, we found that after 4 d of treatment, the regulation of about 33% of the T₃-induced genes and 36% of the T₃-repressed genes were inhibited by BPA. All up-regulated T₃ genes tested by qRT-PCR showed that in the presence of BPA, the expression levels were reduced, confirming the findings from the microarray. When the gene expression levels in the T₃-treated group were compared with those in the T₃/BPA-treated group, the expression of 159 genes was increased by BPA, of which 48% were genes that were down-regulated by T₃ (when compared with the control, untreated group) and had their down-regulation abrogated by BPA. D. Verification of BPA regulation of T₃-regulated genes whose down-regulation was abrogated by the presence of BPA. All four T₃-down-regulated genes tested by qRT-PCR showed that in the presence of BPA, their expression levels were partially reversed as observed by the microarray. For graphical presentation, the qRT-PCR results were expressed as fold induction as compared with the DMSO vehicle controls (control = 1), after normalization with the housekeeping gene, EF1α. Data are shown as means ± SE (n = 3; pooled samples of 10 intestines for each treatment). An asterisk indicates significant differences in mRNA expression levels between T₃ and T₃/BPA treatment groups (P ≤ 0.05). GenBank accession numbers are shown above each chart.

For graphical presentation, the qRT-PCR results were expressed as fold induction as compared with the DMSO vehicle controls (control = 1), after normalization with the housekeeping gene, EF1α. Data are shown as means ± SE (n = 3; pooled samples of 10 intestines for each treatment). An asterisk indicates significant differences in mRNA expression levels between T₃ and T₃/BPA treatment groups (P ≤ 0.05). GenBank accession numbers are shown above each chart.

FIG. 5. Analysis and verification of genes newly identified by the microarray, whose expression was disrupted by BPA in the presence of T₃. A. When the gene expression levels in the T₃-treated group were compared with those in the T₃/BPA-treated group, expression levels of 342 genes were reduced in the presence of BPA, most of which (60%) were T₃-induced genes (i.e. their expression was up-regulated by T₃ when compared with the control, untreated group). B. Verification of BPA regulation of T₃-induced genes whose T₃ induction was reduced by BPA. All up-regulated T₃ genes tested by qRT-PCR showed that in the presence of BPA, the expression levels were reduced, confirming the findings from the microarray. C. When the gene expression levels in the T₃-treated group were compared with those in the T₃/BPA-treated group, the expression of 159 genes was increased by BPA, of which 48% were genes that were down-regulated by T₃ (when compared with the control, untreated group) and had their down-regulation abrogated by BPA. D. Verification of BPA regulation of T₃-regulated genes whose down-regulation was abrogated by the presence of BPA. All four T₃-down-regulated genes tested by qRT-PCR showed that in the presence of BPA, their expression levels were partially reversed as observed by the microarray. For graphical presentation, the qRT-PCR results were expressed as fold induction as compared with the DMSO vehicle controls (control = 1), after normalization with the housekeeping gene, EF1α. Data are shown as means ± SE (n = 3; pooled samples of 10 intestines for each treatment). An asterisk indicates significant differences in mRNA expression levels between T₃ and T₃/BPA treatment groups (P ≤ 0.05). GenBank accession numbers are shown above each chart.
hibition of metamorphosis by BPA. The failure to observe significant effects by BPA on many less dramatically regulated T\(_3\)-response genes is presumably due to the difficulty to detect the relatively small changes in their expression caused by BPA with microarray analysis.

Whereas one may expect that BPA inhibit metamorphosis by disrupting T\(_3\) signaling, it is surprising that the vast majority of the genes affected by BPA are T\(_3\)-response genes. Of the BPA down-regulated genes in the presence of T\(_3\), 60% were T\(_3\)-induced genes whose activation by T\(_3\) was now reduced/eliminated by BPA. Conversely, about 50% of the BPA up-regulated genes in the presence of T\(_3\) were T\(_3\)-down-regulated genes whose down-regulation by T\(_3\) was reduced/eliminated by BPA. Only about 20% of the BPA-regulated genes in the presence of T\(_3\) were completely independent of T\(_3\)-signaling process. Our studies thus indicate that developmental context has a major role in determining the pathways by which BPA interacts in vivo. In this regard, it is worth noting that T\(_3\), but not other hormones, is the causative agent of amphibian metamorphosis and hence intestinal remodeling (15). Whereas it is possible that potential cross-talks between TR and estrogen receptor (ER)-signaling pathways (42, 43, 75) may allow BPA to affect T\(_3\)-pathway through ER, the fact that most of the BPA-regulated genes are T\(_3\)-response genes argue against this. In addition, as discussed above, most of the dramatically T\(_3\)-regulated genes are affected by BPA, suggesting that BPA is likely targeting TRs directly during metamorphosis. Currently there are no data on the expression profiles of estrogens and ER\(_\alpha\) in the intestine during development, although ER\(_\alpha\) mRNA could be detected in whole-body premetamorphic tadpoles and were up-regulated after prolonged T\(_3\) treatment in the liver (76–78). Our microarray analysis showed no regulation by BPA in the expression of two known estrogen-response genes, ER\(_\alpha\) (AY310905, L20736) and steroid-5-\(\alpha\)-reductase (BQ732157) (76, 79), from BPA or combined T\(_3\)/BPA treatments. Furthermore, treatment with T\(_3\) alone did not change their gene expression, suggesting that there does not appear to be any cross-regulation between estrogens and T\(_3\) in the metamorphic intestine. It is possible that the lack of significant ER in the tadpole intestine may be the underlying cause for the observed dominant effects of BPA on T\(_3\)-signaling process during metamorphosis in this study.

In summary, our findings demonstrate that BPA, which is one of the most prevalent chemicals for daily use, suppresses transcriptional activity of ligand-bound TR during vertebrate development. Moreover, genome-wide analysis leads to two major conclusions. First, the inhibitory effect of BPA on metamorphosis is due to the inhibition of the T\(_3\)-pathway. Endocrine disruptor studies normally focus on the regulation of one or a few genes; the pathways involving these genes may or may not have any

FIG. 6. BPA inhibits the genes most significantly regulated by T\(_3\). A, The expression of most of the top 50 significantly T\(_3\)-up-regulated genes in the intestine is reduced by BPA. The genes in shade are attenuated by BPA. B. Most of the top 50 significantly T\(_3\)-down-regulated genes in the intestine have their T\(_3\)-dependent repression reduced by the presence of BPA. The genes in shade are abrogated by BPA. *, The gene is also significantly regulated by T\(_3\) in the tail (t), limb (l), and brain (b), respectively. NP, Gene not present in the earlier cDNA array used for the analysis of the organs t, l, and b (64). Blanks under the other organs indicate genes are not significantly regulated by T\(_3\) in t, l, and b.
significant contribution to the biological effects of the disruptor. This argues for genome-wide molecular analysis of the effect of endocrine disruptors. Second, the major effect of BPA in developing tadpoles is on the T₃, but not estrogenic pathways, which would be expected based on previous BPA studies in vitro and in adult animals, although estrogenic pathways are also likely to be affected by BPA. This argues that the effects of an endocrine disruptor are tissue and developmental stage dependent and that in vitro studies coupled with genome-wide molecular gene regulation analysis are needed to assess the biological effects of an endocrine disruptor and the underlying molecular mechanism. Our findings further demonstrate the unique advantages of combining morphological analysis with genome-wide gene expression studies in amphibians to determine the molecular pathways that underlie a developmental consequence of an EDC, especially for those affecting T₃ pathways. The diverse array of EDCs that may disrupt T₃ levels and the potential for concurrent exposure to many of these compounds make it imperative to use in vivo developmental models to appreciate the effects of EDCs on vertebrate development. This will help to ensure that important environmental health and developmental consequences of EDC exposure are not overlooked.

Acknowledgments

Address all correspondence and requests for reprints to: Yun-Bo Shi, Building 18 T, Room 106, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892. E-mail: shi@helix.nih.gov.

This work was supported in part by the Intramural Research Program, National Institute of Child Health and Human Development, National Institutes of Health.

Disclosure Summary: The authors have nothing to disclose.

References

12. Lazar MA. 1993 Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 14:1–193
13. Yan PM. 2001 Physiological and molecular basis of thyroid hormone action. Physiol Rev 81:1097–1142
22. Zook MC. 2007 Environmental chemicals impacting the thyroid: targets and consequences. Thyroid 17:811–817
41. vom Saal FS, Hughes C. 2003 An extensive new literature concerning low-dose
effects of bisphenol A shows the need for a new risk assessment. Environ Health Perspect 113:926–933
42. Hogan NS, Duarte P, Wade MG, Lean DR, Trudeau VL. 2008 Estrogen exposure affects metamorphosis and alters sex ratios in the northern leopard frog (Rana pipiens); identifying critically vulnerable periods of development. Gen Comp Endocrinol 156:513–523
51. Iwamura S, Yamada M, Kato M, Kikuyama S. 2006 Effects of bisphenol A on thyroid hormone-dependent up-regulation of thyroid hormone receptor α and β and down-regulation of retinoid X receptor γ in Xenopus laevis tail culture. Life Sci 79:2165–2171
58. Ishizuya-Oka A, Shi YB. 2007 Regulation of adult intestinal epithelial stem cell development by thyroid hormone during Xenopus laevis metamorphosis. Dev Dyn 236:3358–3368
60. Buchholz DR, Paul BD, Fu L, Shi YB. 2006 Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog. Gen Comp Endocrinol 145:1–19
68. Tomita A, Buchholz DR, Shi YB. 2004 Recruitment of N-CoR/SMRT-TBL1R1 corepressor complex by unliganded thyroid hormone receptor for gene repression during frog development. Mol Cell Biol 24:3337–3346
70. Morreale de Escobar G. 2001 Thyroid hormone in fetal neurodevelopment. J Pediatr Endocrinol Metab 14:1453–1462
74. Havis E, Le Mevel S, Dubois GM, Shi DL, Scanlan TS, Demeneix BA, Sachs LM. 2006 Unliganded thyroid hormone receptor is essential for Xenopus laevis eye development. EMBO J 25:4943–4951
78. Rabelo EM, Tata JR. 1993 Thyroid hormone potentiates estrogen action of vitellogenin genes and autoinduction of estrogen receptor in adult Xenopus hepatoocytes. Mol Cell Endocrinol 96:37–44