1 Landscape development of the Himalayan-Tibetan orogen: a review

2 Lewis A. Owen

3 Department of Geology, University of Cincinnati, Cincinnati, OH 45221, USA (e-mail:

- 4 *Lewis.Owen@uc.edu*)
- 5

6 Abstract

7 The Himalayan-Tibetan orogen provides one of the best natural laboratories to examine 8 the nature and dynamics of landscape development within continental-continental 9 collisions zones. Many new tectonic-climatic-geomorphic theories and models have 10 emerged and/or have been greatly influenced as a consequence of the study of the region 11 and the quest to understand its geomorphic development. These include studies of the 12 interactions among tectonics, climate and surficial processes, notably, the influence of 13 climate on surface uplift by denudational unloading; the limiting of topography by 14 glaciation (the glacial buzz-saw); localized uplift at syntaxes by enhanced fluvial and 15 glacial erosion that, in turn, weaken the lithosphere, enhancing surface uplift and 16 exhumation (the tectonic aneurysm); climate-driven out-of-sequence thrusting and crustal 17 channel flow; glacial damming leading to differential erosion and uplift; paraglaciation; 18 and the influence of extreme events such as earthquakes, landslides, and floods as major 19 formative processes. The development of new technologies, including satellite remote 20 sensing and global positioning systems, and analytical methods such as numerical dating 21 is now allowing these theories and models to be tested and will inevitably lead to new 22 paradigms.

Keywords: Himalaya; Tibet; geomorphology; landscape development; tectonics;
glaciation; paraglaciation; earthquakes

26

27 The Himalaya and Tibet provide one of the best natural laboratories to examine the 28 nature and dynamics of landscape development within continental-continental collisions 29 zones. Not surprisingly, many new geomorphic theories and models have emerged as the 30 consequence of the study of the region and the quest to understand its geomorphic 31 development. This paper will review the main studies that have been undertaken that 32 have lead to new insights into how mountain belts develop which underlie the new 33 paradigms that landscape development in mountains is a consequence of the interactions 34 among tectonics, climate, and Earth surface processes. The studies will be broadly 35 discussed chronologically to help understand how the different theories and models have 36 evolved.

37

38 Early exploration

The earliest studies in the Himalayan-Tibetan orogen were undertaken during the late 19th 39 and early 20th centuries as western explorer-naturalists travelled the region documenting 40 41 both its cultural and scientific characteristics (e.g. Shaw 1871; Drew 1875). Many of 42 these explorations likely had ulterior motives, being part of the Great Game, the political 43 intrigue between British India and Russia (Keay 1996). Much emphasis was placed on 44 surveying the region, some of which resulted in profound discoveries such as the gravity surveys by Airy (1855) and Pratt (1859) that lead to the realization that the Himalaya and 45 46 other mountains had deep, low-density roots.

48 Probably the most notable geomorphic study was undertaken by Drew (1873, 1875) in 49 the Indus valley, who noted numerous glacial, lacustrine, and alluvial fan landforms. In 50 his 1873 paper, Drew was the first to use the term "alluvial fan" and he was influenced by 51 the earlier work of Surell (1841) and Haast (1864) in the Alps and Canterbury Plains of 52 New Zealand (Fig. 1). Drew's work focused on describing the morphology of the 53 landforms, but little attention was given to their sedimentology. Nevertheless, he 54 discussed their likely origins and emphasized the important evidence for past glaciation 55 throughout Kashmir. Later studies focused on examining the glacial geologic record and 56 included the notable works of Dainelli, (1922, 1934, 1935), Norin (1925), Trinkler (1930), 57 Misch (1935), de Terra & Paterson (1939) and Paffen et al. (1956) for regions throughout 58 the western end of the Himalayan-Tibetan orogen.

59

47

60 Klute (1930) provides the first comprehensive map of the extent of glaciation for the Last 61 Glacial for the entire Himalayan-Tibetan region. At the same time these studies of 62 landforms and glacial geology were being undertaken, bedrock and structural geology 63 were being examined by numerous geologists, most notably the Swiss geologist Augusto 64 Gansser. Much of Gansser's work was published in his seminal book "Geology of the 65 Himalaya" (Gansser 1964). However, these "hard rock" studies had to await the 66 development of plate tectonic theory in the late 1960s and 1970s before a solid 67 framework was available to appreciate their significance and to provide a foundation for 68 tectonic, geomorphic, and landscape development studies.

70 Ice Age studies

71 Early exploration of the Himalaya was concurrent with the development of glacial 72 geology and the realization that the world had experienced extensive glaciation in the 73 recent past. Many observations were made on glacial geology and attempts were made to 74 reconstruct former ice extent throughout the Himalaya. These early studies of glaciation 75 were driven by a desire to correlate Himalayan glacial successions with those recognized 76 in Europe, notably the seminal work of Penck & Brunkner (1909) in the Alps, who 77 argued that four glaciations characterized the Ouaternary. As a consequence, numerous 78 researchers assigned their glacial geological evidence to four glaciations throughout areas 79 of Tibet and the Himalaya (e.g. de Terra & Paterson 1939; Porter 1970; Zhang & Shi 80 1980).

81

82 The first truly modern comprehensive studies of glaciation were undertaken by von 83 Wissmann (1959) and Frenzel (1960), who used the observations of the earliest explorers 84 to construct a regional synthesis of the glaciation of Tibet and the Himalaya. They both 85 suggested that during glacial times, ice caps expanded and extensive valley glacial 86 systems developed throughout much of the Himalaya, Pamir, Kunlun, and Qilian Shan. 87 This view was questioned by Kuhle (1985, 1986, 1987, 1988a, 1988b, 1990a, 1990b, 88 1991, 1993, 1995) who argued for an extensive ice sheet covering most of the Tibetan 89 Plateau during the Last Glacial. This Tibetan ice sheet hypothesis was important 90 throughout the 1980s and 1990s in driving much of the study of the Quaternary glacial 91 geology of Tibet and adjacent regions. Subsequently, however, numerous studies have 92 disproven the existence an extensive ice sheet on Tibet (Derbyshire 1987; Zheng 1989;

93 Burbank & Kang 1991; Derbyshire et al. 1991; Shi 1992; Hovermann et al. 1993a, 94 1993b; Lehmkuhl 1995, 1997, 1998; Rutter 1995; Lehmkuhl et al. 1998; Zheng & Rutter 95 1998; Schäfer et al. 2002; Owen et al. 2003). In particular, as Owen et al. (2008) and 96 Seong et al. (2008) point out, the differences in interpretation between Kuhle (1985, 97 1986, 1987, 1988a, b, 1990a, b, 1991, 1993, 1995) and other researchers is a consequence 98 of their differing interpretation of landforms and sediments, the misuse of equilibrium-99 line altitudes for determining former ice extent, and poor chronological control. It is now 100 generally accepted that a large ice sheet did not cover the Tibetan Plateau, at least not 101 during the past few glacial cycles. Figure 2 illustrates different reconstructions for the 102 extent of glaciation through the Himalaya and Tibet.

103

104 Researchers began to appreciate the complexity of glaciation in the Himalaya and Tibet 105 with the development of marine oxygen isotope stratigraphy for the Quaternary during 106 the 1980s; specifically, that there were many more than four glaciations during the 107 Quaternary Ice Age. However, defining the timing of glaciation in the Himalayan-108 Tibetan orogen was hindered due to the lack of numerical ages on moraines and 109 associated landforms. This was mainly due to the scarcity of organic matter necessary for 110 radiocarbon dating, the standard dating technique for Quaternary landforms and 111 sediments at that time. Rothlisberger & Geyh (1985), however, were able to obtain 112 enough organic material from moraines in the Himalaya and Karakoram to determine 68 113 radiocarbon ages to define ~ 10 glacial advances in the Late Quaternary. Subsequent 114 studies, however, have only provided a few additional radiocarbon ages (e.g., Derbyshire 115 et al. 1991; Lehmkuhl 1997).

The development of optically stimulated luminescence (OSL) and terrestrial cosmogenic nuclide (TCN) surface exposure dating since the late 1980s have allowed workers to date glacial and associated landforms that were previously updateable. Furthermore, the techniques have allowed landforms older than >30 ka (the limit of standard radiocarbon dating) to be defined, and in some cases, to be taken back to many hundreds of thousands years. These method have resulted in a plethora of ages on moraines throughout the Himalaya and Tibet (see summary in Owen *et al.* 2008)

124

125 Owen et al. (2008) highlighted the limitations of OSL and TCN methods by reevaluating 126 published glacial chronologies throughout the Himalaya and Tibet. These limits, for 127 example, include geological factors and uncertainties associated with modeling the 128 appropriate production rates for TCN dating and variation in dose rates for OSL dating. 129 The summary provided by Owen *et al.* (2008) supports the view that expanded ice caps 130 and extensive valley glacier systems existed throughout the Himalaya and Tibet during 131 the late Quaternary, but it is not yet possible to determine whether or not the timing of the 132 extent of maximum glaciation was synchronous throughout the entire region. The data do 133 show considerable variations in the extent of glaciation from one region to the next 134 during a glaciation. Glaciers throughout monsoon-influenced Tibet, the Himalaya, and 135 the Transhimalaya are likely synchronous both with climate change resulting from 136 oscillations in the South Asian monsoon and with Northern Hemisphere cooling cycles. In contrast, glaciers in Pamir in the far western regions of the Himalayan–Tibetan orogen 137 138 advanced asynchronously to regions that are monsoon-influenced and appear to be mainly in phase with the Northern Hemisphere cooling cycles. Owen *et al.* (2008) also pointed out that broad patterns of local and regional variability based on equilibrium-line altitudes have yet to be fully assessed, but have the potential to help define changes in climatic gradients over time. Clearly, accurate reconstructions of the former extent and timing of glaciation is important for assessing and quantifying the tectonic-climatelandscape models.

145

146 **Paraglaciation**

147 In the 1970s, studies on Late Quaternary glaciofluvial deposits on Baffen Island and in 148 British Columbia lead to the realization that rates of sedimentation increase significantly 149 during times of deglaciation (Ryder 1971a, 1971b; Church & Ryder 1972). This lead to 150 the concept of paraglaciation, which argues that nonglacial processes are directly 151 conditioned by glaciation and that landscape changes are greatest during times of 152 deglaciation (Ryder 1971a, 1971b; Church & Ryder 1972; and reviewed by Ballantyne 153 2002, 2004). The term paraglacial was applied to describe the processes that operate and 154 the landforms that are produced during deglaciation as the landscape readjusts to new 155 climatic and environmental conditions. Paraglacial time was considered to be the period 156 when paraglacial processes are dominant, mainly fluvial erosion and resedimentation, and 157 mass movement. Paraglacial processes are particularly important in the transfer and 158 resedimentation of glacial and proglacial sediments within and beyond the high-mountain 159 landscapes, thus helping to contribute to the net denudation of high mountains.

161 When valley fill successions, river terraces, and alluvial fans began to be studied in the 162 Karakoram during late 1980s and early 1990s, the concept of paraglaciation was applied 163 to help understand their origin (Owen 1989; Derbyshire and Owen 1990; Owen & 164 Derbyshire 1993). Subsequently, many studies have argued for the importance of 165 paraglaciation in the landscape development of the other regions of the Himalayan-166 Tibetan orogen (Owen et al. 1995, 2006; Owen & Sharma 1995; Owen et al. 2002; Yang 167 et al. 2002; Barnard et al. 2004a, 2004b, 2006a, 2006b; Seong et al. 2009a, 2009b). 168 Figure 3 illustrates how the relative composition of landforms changes within Himalayan 169 valleys that were deglaciated at different times, showing a change from moraine-170 dominated to terrace- and fan-dominated with time.

171

172 It is now generally accepted that landscapes in the Himalayan-Tibetan orogen have been 173 continuously readjusting to changing climatic and environmental conditions associated 174 with the high frequency of the oscillations of glaciers (on millennial timescales) 175 throughout the late Quaternary.

176

Glacial lake outburst floods (GLOFs) constitute one of the most dramatic manifestations of paraglaciation. They result from rapid drainage of moraine-dammed or supraglacial lakes and in recent years have attracted much attention due to the potential catastrophic impact they may have on settlements throughout the Himalaya. Their frequency may likely increase as glaciers continue to melt and retreat due to human-induced climate change (Reynolds 2000; Richards & Reynolds 2000; Benn *et al.* 2001). Evidence for past GLOFs is abundant throughout the Himalaya and includes mega-ripples, giant boulder 184 clusters, scour pools, and large terraces (Coxon *et al.* 1996, Barnard *et al.* 2006a; Seong
185 *et al.* 2009a).

186

187 Plate tectonics and landscape development

188 The Himalaya and Tibet received much attention as plate tectonic theory developed in the 189 late 1960s and early 1970s, but logistical and political access to the region was somewhat 190 limited, hindering study of the region. In the late 1970s, a series of new roads were 191 constructed to traverse the Himalaya and Tibet permitting relatively easy access to the 192 region (Owen 1996). Furthermore, China began to strengthen its international research 193 collaboration, allowing more access to Tibet and adjacent regions. It was not until the 194 early 1980s, however, that researchers actually began to describe tectonic landforms and 195 interpret their origin.

196

197 Much of the early work on tectonic geomorphology was stimulated by the realization that 198 a significant component of the collision of the Indian and Asian continental lithospheric 199 plates might be accommodated by lateral extrusion of Tibet along major strike-slip faults 200 (Tapponnier & Molnar 1976; Fig. 4). Faulted landforms, notably faulted moraines, were 201 examined to help estimate displacement rates along the major strike-slip faults 202 (Tapponnier & Molnar 1977; Molnar & Tapponnier 1978; Armijo *et al.* 1986).

203

Other significant tectonic geomorphic work included the study of Seeber & Gornitz (1983) who analyzed the longitudinal profiles of major rivers that drained across the 206 Himalaya, which emphasized important tectonic controls on knick point development and207 drainage patterns.

208

209 As the structure of the Himalaya and Tibet began to be mapped and examined by 210 integrating thermochronologic and geobarometric methods, areas of differential uplift 211 were identified. Most notable was focused uplift around the Himalayan western and 212 eastern syntaxes, particularly Nanga Parbat (Zeitler, 1985). This lead to the initial 213 examination of the tectonic geomorphology of these zones of focused uplift (e.g. Owen 214 1988a; Shroder et al. 1989). It soon became apparent that relating landforms and 215 deformed sediments to tectonic processes was not simple. Many of the Himalayan 216 landforms are polygenetic in origin (Owen 1989) and therefore any tectonic influences 217 could not easily be elucidated by simple study of landforms. In addition, glacial and mass 218 movement processes in Himalayan-Tibetan environments produce deformation structures 219 that are easily misinterpreted as tectonic, such as the glaciotectonised deposits throughout 220 the Skardu Basin and landslides along the middle Indus valley in Northern Pakistan 221 (Owen 1988a, 1988b; Owen & Derbyshire 1988).

222

Over the last two decades new mechanical and thermomechanical models to explain the tectonic evolution of Himalayan-Tibetan orogen have been proposed. These have evolved from an orogenic wedge model (notably that of Burchfiel *et al.* 1992), to pervasive ductile flow, indicated by folded isograds within a tectonic wedge (Grujic *et al.* 1996), to channel flow of the middle crust (Jamieson *et al.* 2004), with variants of mid-crustal flow based on numerical modeling (Beaumont *et al.* 2004). Harris (2007) describes the history 229 and essential components of these models and summarizes the current view, which 230 proposes movement of a low-viscosity crustal layer in response to topographic loading. 231 This potential mechanism results in the eastward flow of the Asian lower crust causing 232 the peripheral growth of the Tibetan Plateau and the southward flow of the Indian middle 233 crust and its extrusion along the Himalayan topographic front. Harris (2007) stressed that 234 thermomechanical models for channel flow link extrusion to focused orographic 235 precipitation at the surface. These models are exciting because they recognize the links 236 among tectonics, climate, and surficial processes.

237

238 In addition to the tectonic models for the Himalaya, numerous models have been 239 proposed for the evolution of the high elevations in Tibet. Tapponnier et al. (2001) 240 summarized two end members: 1) continuous thickening and widespread viscous flow of 241 the crust and mantle beneath the entire plateau; and 2) time-dependent, localized shear 242 between coherent lithosphere blocks. Tapponnier *et al.* (2001) favor the latter and argue 243 for dominant growth of the Tibetan Plateau toward the east and northeast. This in turn has 244 led to the development of new mountain ranges and basins, with the basins becoming 245 progressively filled to form flat, high plains.

246

247 Interactions between climate, glacial erosion, uplift and topography

During the late 1980s and 1990s, much attention was focused on the potential role of uplift of the Tibetan-Himalayan orogen in driving Cenozoic global cooling and the growth of large continental ice sheets during the Late Tertiary and Quaternary (Raymo *et al.* 1988; Ruddiman & Kutzbach 1989, 1991; Prell & Kutzbach 1992; Raymo & 252 Ruddiman 1992). The uplift of the orogen was thought to have altered atmospheric 253 circulation and to have changed the concentrations of gases in the atmosphere as a result 254 of changes in biogeochemical cycles associated with the increased weathering of newly 255 exposed rock surfaces, which, in turn, lead to global cooling. Controversy ensued, 256 however, over defining the timing and magnitude of Tibetan-Himalayan uplift and the 257 complex feedbacks involved in the biogeochemical cycles and climate (Molnar & 258 England 1990; Dupont-Nivet et al. 2008; Garzione 2008). In a broad sense, however, it is 259 generally accepted that uplift of the orogen probably played a significant role, in addition 260 to many other factors, in Cenozoic cooling (Ruddiman 1997; Owen 2006). In particular, 261 the uplift of the orogen likely helped initiate the south Asian monsoon at ~ 8 Ma (Burbank 262 et al. 1993), which has had a profound impact on the dynamics of surficial processes in 263 the Central Asia.

264

265 The high elevation of the Himalayan-Tibetan orogen makes it the most glaciated region 266 outside of the polar realm. Furthermore, the widespread evidence of more extensive 267 glaciation in the past made it inevitable that glaciers were considered important agents in 268 the denudation that lead to long term lowering of the orogen and limited the orogen's 269 average elevation (Broecker et al. 1990). This view was challenged, however, by Molnar 270 & England (1990) who suggested that glacial erosion generating local relief in the cores 271 of mountain ranges might actually initiate tectonic uplift because of erosional unloading 272 of the crust in the cores of ranges (Fig. 5). Furthermore, Molnar & England (1990) 273 suggested that the onset of the Quaternary Ice Age and enhanced glaciation may have 274 lead to accelerated uplift of Himalayan and Tibetan peaks as a consequence of great glacial and associated erosion. Therefore, in Molnar & England (1990) view there is
potential for a significant positive feedback loop in which glacial erosion leads to uplift,
which, in turn, results in larger glaciers and more erosion and hence more peak uplift.

278

Molnar & England's (1990) paper stimulated much debate and similar connections have been suggested elsewhere (e.g. Small and Anderson 1998), but whether localized erosion can actually result in mountain peak uplift remains controversial (Gilchrist and Summerfield 1991).

283

284 In contrast, Brozovic *et al.* (1997) argued that topographic data from Nanga Parbat show 285 that glaciers are rapidly eroding topography above the equilibrium-line altitude (ELA) 286 exerting an altitudinal limit on mountain height. This has become known as the glacial 287 buzz-saw model and has subsequently been applied to understanding the topography in 288 other mountains, including the Cascade mountains in Washington, and the Chugach 289 Range in Alaska (Mitchell and Montgomery 2006; Spotila et al. 2004; Meigs & Sauber 290 2000; Montgomery et al. 2001). Figure 6 shows the relationship between mountain 291 topography, latitude, and present ELAs.

292

Other studies, however, such as Whipple *et al.* (1999) argued that there are geomorphic limits to climate-induced increases in topographic relief and that neither fluvial nor glacial erosion is likely to induce significant isostatic peak uplift. Whipple *et al.* (1999) provide a quantitative overview and constraints, including empirical evidence to define the effects of a transition from fluvial to glacial erosion. Whipple *et al.* (1999) showed 298 that in almost all non-glaciated landscapes an increase in erosivity of the fluvial system is 299 anticipated to lead to a reduction both in trunk stream and tributary valley relief. When 300 coupled with the constraint that hillslope relief rapidly attains a maximum in active 301 orogens, this observation implies that ridge to valley bottom relief will actually decrease 302 under these conditions. Whipple *et al.* (1999) suggest that relief increase is possible only 303 if a given climate change induces a decrease in erosivity along headwater channel 304 segments in concert with a simultaneous increase in erosivity downstream. An onset of 305 glaciation increases hillslope relief, valley widening, and the formation of hanging 306 valleys and overdeepenings, and relief reduction over short wavelengths. In contrast, over 307 long wavelengths there is a reduction in relief along trunk and tributary valley profiles. If 308 the upper reaches have thin cold based glaciers, ridges and peaks may be protected from 309 erosion and glacier valley profiles may become more concave, adding potentially to 310 overall glacial relief. However, for warm-based glaciers Whipple et al. (1999) argue that 311 relief production associated with each of the various glacial relief production mechanisms 312 scales with ice thickness. They also argue that relief production is limited to several 313 hundred meters and it is unlikely that climate change would induce significant amounts 314 of isostatic relief production.

315

This ability of glaciers and rivers to accomplish rapid erosion underlies a proposed explanation for localized rapid rock uplift in the syntaxes of the Himalaya, a phenomenon that has been dubbed the "tectonic aneurysm" (Zeitler *et al.* 2001; Koons 2002). The aneurysm model argues that the dynamic interactions of focused erosion, topographic stresses, peak uplift, rapid exhumation, thermal weakening of the lithosphere, and deformation leads to localized feedbacks among erosion, deformation, and uplift (Fig. 7). Significant debate exists, however, over the importance of mountain glaciers versus other processes, such as fluvial erosion and mass movement, in shaping mountain landscapes and driving the tectonic aneurysm (Hallet *et al.* 1996).

325

326 The discovery in the 1980s of the South Tibetan Detachment fault near the crest of the 327 Himalaya and the realization that it defined northward normal displacement of Tibet 328 stimulated the development of the extrusive flow model (sometimes referred to as the 329 extrusion model; Burchfiel et al. 1992; Fig. 8). The extrusive flow model theorizes 330 southward flow of ductile middle and lower crust that continuously replenishes the 331 Himalayan range front, transporting material from between the Main Frontal thrust and 332 the South Tibetan fault system, especially the rocks bounded by the South Tibetan 333 Detachment fault system above and the Main Central (sole) Thrust below (Hodges et al. 334 2001; Harris 2007). This southward extruding zone is thought to represent the ductile 335 lower crustal channel of Tibet that has ground its way to the surface since the Miocene 336 (Harris 2007). Theoretical models by Beaumont *et al.* (2001) argued that channel flow is 337 maintained by erosion of the Himalayan front. This view was enhanced by geomorphic 338 studies that suggest a feedback between erosion and extrusive flow (Wobus et al. 2003; 339 Hodges et al. 2004).

340

Examining the Marsyandi River valley that traverses a region of extremely high exhumation between the South Tibetan Detachment and the Main Central Thrust, and where there is very high precipitation, Burbank *et al.* (2003), argue that there is no direct 344 precipitation-erosion linkage because erosion rates are constant based on apatite fission-345 track ages that show no systematic trend. Rather they suggest that additional factors that 346 influence river incision rates, such as channel width and sediment concentrations, must 347 compensate for differences in precipitation across the region. Moreover, spatially 348 constant erosion is a response to uniform, upward tectonic transport of Greater 349 Himalayan rock above a crustal ramp.

350

351 In contrast, on the basis of geologic mapping of the Marsyandi valley in central Nepal, 352 Hodges et al. (2004) showed that a zone of recent faulting is coincident with an abrupt 353 change in river gradient, which is thought to mark the transition from rapid uplift of the 354 Higher Himalaya to a region of slower uplift to the south, and likely reflects active 355 thrusting at the topographic front. They suggest that the zone of active thrusting is 356 coincident with a zone of intense monsoon precipitation, likely indicating a positive 357 feedback between focused erosion and deformation at the front of the Higher Himalayan 358 ranges.

359

Korup & Montgomery (2008) suggested a new twist on the landscape development of the Himalayan-Tibetan orogen in their study of the geomorphology of Namche Barwa. In theory, rivers in this region should progressively erode towards their heads, resulting in the steady degradation of the plateau's margins and that over time, knickpoints should migrate upstream and become less apparent as erosion progresses. Recently, however, geologic evidence in the Namche Barwa region has shown that the Tsangpo and its tributary streams that traverse Namche Barwa have likely been stable, remaining at the 367 same positions over at least the last million years, effectively preserving the margin of the 368 Tibetan Plateau (Finnegan *et al.* 2008). Various theories have been invoked to help 369 explain the preservation of the margin of the Himalayan-Tibetan orogen, including 370 theories of differential rock uplift matching erosion and other mechanisms, such as 371 landsliding that armors valley floors and helps protect them from river erosion (Lave & 372 Avouac 2001; Ouimet *et al.* 2007).

373

374 Korup & Montgomery (2008) highlight that broad stream valleys with substantial 375 terraces and thick valley fill sediments are present upstream of moraines that mark where 376 glaciers and their moraines dammed the Tsangpo and its tributaries. In contrast, stream 377 channels are more confined and are usually entrenched into bedrock downstream of the 378 moraines. They argued that the glaciers and/or the moraines impounded the streams to 379 produce large lakes that fill with sediment, increasing river sedimentation upstream (Fig. 380 9). These sediments then essentially protected the upstream valley from erosion as stream 381 power decreased in the newly established broad valleys. The sediments become incised to 382 form terraces, with little overall valley lowering. In contrast, the stream channels are 383 confined as they cut through the moraines, resulting in increased stream power and 384 leading to enhanced erosion and entrenchment into bedrock downstream of the moraine. 385 This, in turn, leads to enhanced bedrock uplift in the gorge sections, essentially 386 preserving the margin of Tibet.

All these models highlight an exciting trend in the Earth sciences linking endogenetic and exogenic processes, and highlighting the complex feedbacks among these processes that are reflected in the landscapes that develop.

391

Extreme events

393 The relative roles of high magnitude-low frequency and low magnitude-high frequency 394 events in landscape development have been long debated (Brunsden & Jones 1984). 395 Defining what constitutes a high magnitude-low frequency event is difficult for the 396 Himalayan-Tibetan orogen where geomorphic processes are often an order of magnitude 397 greater in size and effect than most other terrestrial settings, and the definition depends 398 on the temporal and spatial framework that is being considered. However, a catastrophic 399 flood that destroys extensive farmland, highways, and villages, a giant landslide displacing >1 million m³ of displaced debris, and an earthquake of magnitude 7 or higher 400 401 clearly constitute high magnitude events. For clarity, this type of event will be referred to 402 as an *extreme event*.

403

404 Probably the most evident extreme geomorphic events are landslides triggered by large 405 earthquakes. Yet, there have not been many studies of earthquake-triggered landslides in 406 the Himalayan-Tibetan orogen because of the relatively low occurrence of large 407 earthquakes over the hundred years since records have been kept. However, the 1991 and 408 1999 Garhwal, the 2001 Kokoxili, the 2005 Kashmir, and the 2008 Wenchuan (Sichuan) 409 earthquakes have provided opportunities to study the effects of earthquake-triggered 410 landslides on landscape development (Owen *et al.* 1996; Barnard *et al.* 2001; Van der
411 Woerd *et al.* 2004).

412

413 During the Garhwal earthquakes, landsliding comprised mainly rock and debris 414 avalanches and were concentrated along the lower stretches of the valley slopes. Owen et 415 al. (1996) and Barnard et al. (2001) calculated the equivalent net lowering (denudation) 416 of the landscape by mapping and measuring the amount of sediment produced and moved 417 during and shortly after the earthquakes and concluded that this was small compared to 418 earthquake-induced landsliding in other mountainous regions. Furthermore, Owen et al. 419 (1996) and Barnard et al. (2001) were able to show that long-term denudation rates and 420 sediment flux resulting from human and monsoon activity in the region was far more 421 significant than earthquake-induced mass movements and associated processes. These 422 studies, therefore, questioned the relative importance of earthquake-induced landforms 423 and processes in landscape evolution of the Himalaya.

424

425 In contrast, landslides triggered by the 2005 Kashmir earthquake were much more numerous occurring throughout a region of $>7500 \text{ km}^2$, but were highly concentrated, 426 427 associated with six geomorphic-geologic-anthropogenic settings (Owen et al. 2008; 428 Kamp et al. 2008). Owen et al. (2008) estimated that several thousand landslides were 429 triggered, mainly rock falls and debris falls, although translational rock and debris slides 430 also occurred. In addition, a debris avalanche (the Hattian Bala sturzstrom) comprising >80 million m³ occurred at Hattian, which blocked streams created two lakes (Fig. 10). 431 432 The 2008 Wenchuan earthquake triggered numerous large landslides, including one that 433 buried >700 people (USGS, 2008), and probably many thousands of smaller landslides,
434 yet their full impact has still to be assessed.

435

436 Landsliding triggered by the 14 November 2001 magnitude 7.9 Kokoxili earthquake has 437 not been fully assessed, but Van der Woerd et al. (2004) were able to map the occurrence of several giant ice avalanches (each involving > 1 million m³ of ice and snow) initiated 438 439 by slope failure from ice caps due to strong ground motion. These ice avalanches 440 transported little rock debris, and Van der Woerd et al. (2004) concluded that it is 441 unlikely that ice avalanches are very important in contributing to the landscape develop 442 in Tibet. Van der Woerd et al. (2004) argued, however, that given the appropriate 443 geologic and climatic conditions, ice avalanching may be an important process in the 444 landscape evolution of high mountainous terrains.

445

446 In summary, the importance of earthquake-triggered landslides for landscape 447 development has not been thoroughly assessed and is likely to be an important topic of 448 future research. However, non-earthquake triggered landslides are pervasive throughout 449 much of the Himalaya and are triggered by undercutting of slopes by fluvial and glacial 450 erosion. In monsoon areas, heavy seasonal rainfall enhances landsliding. There are numerous large/giant landslides, which comprise > 1 million m³ of debris, throughout the 451 452 orogen. Many of these are ancient. Recent studies are suggesting they their formation is 453 temporally clustered and their movement is associated with times of enhanced monsoon, 454 such as during the early Holocene when higher groundwater levels enhance failures 455 (Bookhagen et al. 2005; Dortch et al. 2009; Fig. 11).

456

457 Landsliding can also initiate extreme flooding events. This occurs when landslides dam 458 drainages and create lakes that may drain catastrophically if the landslide dam fails. The 459 Indus valley provides several infamous examples of such extreme events. The most 460 notable was the Indus flood of 1841, which was the result of the drainage of a > 60 km-461 long lake in the Indus and Gilgit valleys, which were blocked as the results of the 462 earthquake-triggered collapse of the Lichar Spur on Nanga Parbat in 1840. The flood 463 waters advanced > 400 km out of the Himalaya and devastated a Sikh army that was 464 camped on the Chach Plain near Attock (Mason 1929).

465

466 Owen (1996) provides other examples of landslide-dammed lakes that failed 467 catastrophically. The geomorphic consequences of such failures have not been 468 systematically assessed and quantified, but clearly they result in major landscape changes 469 involving large scale erosion and resedimentation.

The Garhwal, Kashmir, and Wenchuan earthquakes have focused much interest on determining the frequency and magnitude of large and great earthquakes along the Himalaya and in Tibet (e.g. Wesnousky *et al.* 1999; Bilham *et al.* 2001, Kumar *et al.* 2001, 2006; Feldl & Bilham 2006; Burchfiel *et al.* 2008; Kondo *et al.* 2008). These studies show that great earthquakes are not uncommon in the Himalaya and are likely very important for landscape development. In addition, they pose a very serious risk to the people living in the orogen.

477

479 **Future trends**

480 Predicting the advances of future research trends in any discipline is challenging. The major paradigm shifts and new technological developments applied to understanding 481 482 landscape development of the Himalava-Tibetan orogen over the last few decades 483 illustrates how difficult it would have been to have predicted where the discipline would 484 have progressed just a few decades ago. Probably one of the greatest challenges for us is 485 to examine the complex variability between regions within the Himalayan-Tibetan 486 orogen, and to quantify the timing, rates, and magnitude of landscape development on different timescales ranging from 10^{0} to 10^{6} years. The development and application of 487 488 new technologies, including satellite remote sensing (e.g., studies such as Bookhagen & 489 Burbank 2006) and global positioning systems (e.g., studies such as Chen et al. 2004; 490 Jade et al. 2004), plus analytical methods such as numerical dating, will allow many of 491 the new theories and models to be tested.

492

493 **Conclusion**

494 The continuous study of the Himalayan-Tibetan orogen over the last century has resulted 495 in exciting new paradigms on the nature and dynamics of landscape development within 496 continental collisions zones. Of particular note is the realization that complex 497 links, interactions, and feedbacks exist among tectonics, climate, and landscape 498 development. New models based on these complex relationships include the influence of 499 climate on rock uplift by denudational unloading of the crust; the limiting of topography 500 by glaciation (the glacial buzz-saw): localized uplift at syntaxes by enhanced fluvial and 501 glacial erosion that, in turn, weaken the lithosphere and so enhance bedrock uplift (the

tectonic aneurysm); climate-driven out-of-sequence thrusting and focused erosion driving extrusion of ductile crustal channels, and glacial damming leading to differential erosion and uplift. Improved mapping and dating of landforms will inevitably allow us to test these models and will likely result in the development of new paradigms.

506

507 Acknowledgement

This manuscript was written to express my sincere and profound thanks to Professor Brian Windley for supervising me as a doctoral student, introducing me to the Himalayan-Tibetan orogen, and for his continued encouragement throughout my career. Many thanks to Tim Phillips for drafting most of the figures included in this paper, and Craig Dietsch and David Nash for comments on this manuscript.

513

514 **References**

Airy, G.B. 1855. On the computation of the effect of the attraction of the mountain masses
disturbing the apparent astronomical latitude of stations in geodetic surveys. *Philosophical Transactions of the Royal Society of London*, 145, 101-104.

518

Armijo, R., Tapponnier, P., Mercier, J. L. & Hanz, T.-L. 1986. Quaternary extension in southern
Tibet: field observations and tectonic implications. *Journal of Geophysical Research*, 91, 1380313872.

522

Ballantyne, C. K. 2002. Paraglacial geomorphology. *Quaternary Science Reviews*, 21, 1935–2017.

- Ballantyne, C. K. 2004. Paraglacial landsystems. *In:* Evans, D. J. (ed.) *Glacial Landsystems*.
 Edward Arnold, London, 432–461.
- 527
- 528 Barnard, P. L., Owen, L. A., Sharma, M. C. & Finkel, R. C. 2001. Natural and human-induced
- 529 landsliding in the Garwhal Himalaya of Northern India. *Geomorphology*, 40, 21-35.

530	
531	Barnard, P. L., Owen, L. A. & Finkel, R. C. 2004a. Style and timing of glacial and paraglacial
532	sedimentation in a monsoonal influenced high Himalayan environment, the upper Bhagirathi
533	Valley, Garhwal Himalaya. Sedimentary Geology, 165, 199-221.
534	
535	Barnard, P. L., Owen, L. A., Sharma, M. C. & Finkel, R. C. 2004b. Late Quaternary (Holocene)
536	landscape evolution of a monsoon-influenced high Himalayan valley, Gori Ganga, Nanda Devi,
528	NE Ganiwai. Geomorphology, 61 , 91-110.
520	Permand B. L. Owen I. A. & Finkel B. C. 2006a Quetermary fans and terraces in the Khumhu
540	Himalaya south of Mt Everast: their characteristics are and formation <i>Journal of the</i>
540	Geological Society London 163 382 400
541	Geological Society, London, 105, 585-400.
543	Barnard P. L. Owen L. A. Finkel R. C. & Asahi K. 2006b Landscape response to deglaciation
544	in a high relief monsoon-influenced alnine environment Langtang Himal Nenal <i>Quaternary</i>
545	Science Reviews 25 2162-2176
546	Science Reviews, 2 , 2102 2170.
547	Beaumont, C., Jamieson, R. A., Hguven, M. H., & Lee, B. 2001, Himalavan tectonics explained
548	by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. <i>Nature</i> .
549	414 , 738-742.
550	
551	Beaumont, C., Jamieson, R. A., Nguyen, M. H., & Medvedev, S. 2004. Crustal channel flows: 1.
552	Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. Journal of
553	Geophysical Research, 109, B06406.
554	
555	Benn, D. I., Wiseman, S., & Hands, K. 2001. Growth and drainage of supraglacial lakes on the
556	debris-mantled Ngozumpa Glacier, Khumbu Himal. Journal of Glaciology, 47, 626-638.
557	
558	Blisnick, P. M., Hacker, B. R., Glodny, J., Ratschbacher, L., Bi, S., Wu, Z., McWilliams, M. O.
559	& Calvert, A. 2001. Normal Faulting in central Tibet since at least 13.5 Myr ago. Nature, 412,
560	628-632.
561	
562	Bilham, R., Gaur, V. K. & Molnar, P. 2001. Himalayan Seismic Hazard. Science, 293, 1442-1444.
563	

564	Bookhagen, B. and Burbank, D.W. 2006. Topography, relief, and TRMM-derived rainfall
565	variations along the Himalaya. <i>Geophysical Research Letters</i> , 33 , L08405.
566	
567	Bookhagen, B., Thiede, R. C. & Strecker, M. R. 2005. Late Quaternary intensified monsoon
568	phases control landscape evolution in the northwest Himalaya. Geology, 33, 149-152.
569	
570	Broecker, W. S. & Denton, G. H. 1990. What drives glacial cycles? Scientific American, January,
571	49-56.
572	
573	Brozovic, N., Burbank, D. W. & Meigs, A. J. 1997. Climatic limits on landscape development in
574	the northwestern Himalaya. Science, 276, 571-574.
575	
576	Brunsden, D. & Jones, D. K. C. 1984. The geomorphology of high magnitude-low frequency
577	events in the Karakoram Mountains. In: Miller, K. (ed) International Karakoram Project.
578	Cambridge University Press, Cambridge, 343-388.
579	
580	Burbank, D. W. & Kang, J. C. 1991. Relative dating of Quaternary moraines, Rongbuk Valley,
581	Mount Everest, Tibet: Implications for an Ice Sheet on the Tibetan Plateau. Quaternary Research,
582	36 , 1-18.
583	
584	Burbank, D. W., Derry, L. & France-Lanord, C. 1993, Lower Himalayan detrital sediment
585	delivery despite an intensified monsoon at 8 Ma. Nature, 364, 48-50.
586	
587	Burchfiel, B. C., Chen, Z., Hodges, K. V., Liu, Y., Royden, L. H., Deng, C. & Xu, J. 1992. The
588	South Tibetan detachment system, Himalayan orogen: Extension contemporaneous with and
589	parallel to shortening in a collisional mountain belt. Geological Society of America Special Paper,
590	269, 41 pp.
591	
592	Burchfiel, B. C., Royden, L. H., van der Hilst, R. D., Hager, B. H., Chen, Z., King, R. W., Li, C.,
593	Lü, J., Yao, H. & Kirby, E. 2008. A geological and geophysical context for the Wenchuan
594	earthquake of 12 May 2008, Sichuan, People's Republic of China. GSA Today, 18, 4–11
595	

596	Chen, Q., J. T. Freymueller, Z. Yang, C. Xu, W. Jiang, Q. Wang, and J. Liu (2004), Spatially
597	variable extension in southern Tibet based on GPS measurements, Journal of Geophysical
598	Research, 109, B09401.
599	
600	Chung, S. L., Lo, C. H., Lee, T. Y., Zhang, Y., Xie, Y., Li, X., Wang, K. L. & Wang, P. L. 1998.
601	Diachonous uplift of the Tibet Plateau starting 40 Myr ago. Nature, 394, 769-773.
602	
603	Church, M. A. & Ryder, J. M. 1972. Paraglacial sedimentation: a consideration of fluvial
604	processes conditioned by glaciation. Geological Society of America Bulletin, 83, 3059-3071.
605	
606	Coxon, P., Owen, L. A. & Mitchell, W. A. 1996. A late Quaternary catastrophic flood in the Lahul
607	Himalayas. Journal of Quaternary Science, 11, 495-510.
608	
609	Cunningham, W. D., Windley, B. F., Dorjnamjaa, D., Badamgarov, G. & Saander, M. 1996. Late
610	Cenozoic transpression in southwestern Mongolia and the Gobi Altai-Tien Shan connection.
611	Earth and Planetary Science Letters, 140, 67-82.
612	
613	Dainelli, G. 1922. Studi sul glaciale Spedizone Italian de Filippi nell' Himalaia, Caracorume
614	Turchestan/Cinese (1913-1914). Ser II, 3, Zanichelli, Bologna, 658 pp.
615	
616	Dainelli, G. 1934. Studi sul Glaciale: Spedizone Italian de Filippi nel'Himalaia, Caracorum e
617	Turchestan Cinese (1913-1914). Ser. II., 3, Zanichelli, Bologna, 658 pp.
618	
619	Dainelli, G. 1935. La Series dei Terreni: Spedizione Ilaliana De Fillippi nell'Himalaia,
620	Caracorum e Turchestan Chinese (1913-1914). Ser. II, 2, Zanichelli, Bologna, 230 pp.
621	
622	Derbyshire, E. 1987. A history of the glacial stratigraphy in China. Quaternary Science Reviews,
623	6 , 301-314.
624	
625	Derbyshire, E. & Owen, L.A. (1990) Quaternary Alluvial Fans in the Karakoram Mountains. In:
626	Rachocki, A. H. & Church, M. (eds) Alluvial Fans: A field approach. John Wiley & Sons Ltd.,
627	Chichester, 27-53.
628	

629	Derbyshire, E., Shi, Y., Li, J., Zheng, B., Li, S. & Wang, J. 1991. Quaternary glaciation of Tibet:
630	the geological evidence. Quaternary Science Reviews, 10, 485-510.
631	
632	De Terra, H. & Paterson, T.T., 1939. Studies on the Ice Age in India and associated human
633	cultures. Carnegie Institute of Washington Publications, 493, 354 pp.
634	
635	Dortch, J., Owen, L. A., Haneberg, W. C., Caffee, M. W., Dietsch, C. & Kamp, U. 2009. Nature
636	and timing of large-landslides in the Himalaya and Transhimalaya of northern India. Quaternary
637	Science Reviews, in press.
638	
639	Drew, F. 1875 (reprinted 1980). The Jummoo and Kashmir Territories: a geographical account.
640	Indus Publications, Karachi, Pakistan.
641	
642	Dupont-Nivet, G., Hoorn, C. & Konert, M. 2008. Tibetan uplift prior to the Eocene-Oligocene
643	climate transition: Evidence from pollen analysis of the Xining Basin. <i>Geology</i> , 36 , 987-990.
644	Feldl N. & Bilham R. 2006. Great Himalayan earthquakes and the Tibetan plateau. Nature 444,
645	165-170.
646	Finlayson, D.P., Montgomery, D.R. & Hallet, B., 2002. Spatial coincidence of rapid inferred
647	erosion with young metamorphic massifs in the Himalayas. <i>Geology</i> , 30 , 219-222.
648	
649	Finnegan, N. J., Hallet, B., Montgomery, D. R., Zeitler, P. K., Stone, J. O., Anders, A. M. & Liu,
650	Y. 2008 Coupling of rock uplift and river incision in the Namche Barwa–Gyala Peri massif, Tibet.
651	Geological Society of America Bulletin, 120 , 142-155.
652	
653	Frenzel, B. 1960. Die Vegetations- und Landschaftszonen Nordeurasiens während der letzten
654	Eiszeit und während der Postglazialen Warmezeit. Abhandlungen mathnat. Kl.d. Akad. Wiss.
655	<i>U.d. Lit.</i> , 13 , 937-1099.
656	
657	Gansser, A. 1964. <i>Geology of the Himalaya</i> . Wiley, Interscience, London, 289 pp.
658	,
659	Garzione, C.N., 2008, Surface uplift of Tibet and Cenozoic global cooling Geology 36 1003-
660	1004.
661	

662	Gasse, F., Fontes, J. C., Van Campo, E. & Wei, K. 1996. Holocene environmental changes in
663	Bangong Co basin (Western Tibet). Part 4: discussion and conclusions. Paleogeography,
664	Paleoclimatology, Paleoecology, 120, 79–92.
665	
666	Gilchrist, A. R. & Summerfield, M. A. 1991. Denudation, isostasy and landscape evolution.
667	Earth Surface Processes & Landforms, 16, 555 – 562.
668	
669	Grujic, D., Casey, M., Davidson, C., Hollister, L. S., Kündig, R., Pavlis, T. & Schmid, S. 1996.
670	Ductile extrusion of the Himalayan Crystalline in Bhutan: evidence from quartz microfabrics.
671	<i>Tectonophysics</i> , 260 , 21-43.
672	
673	Haast, J. 1879. Geology of the Provinces of Canterbury and Westland, New Zealand.
674	Christchurch.
675	
676	Harris, N. 2007. Channel flow and the Himalayan-Tibetan orogen: a critical review. Journal of
677	the Geological Society, London, 164, 511-523.
678	
078	
679	Hodges, K. 2006. Climate and the evolution of mountains. Scientific American, August, 72-79.
678 679 680	Hodges, K. 2006. Climate and the evolution of mountains. Scientific American, August, 72-79.
679 680 681	Hodges, K. 2006. Climate and the evolution of mountains. <i>Scientific American</i> , August, 72-79. Hodges, K. V., Hurtado, J. M. & Whipple, K. X. 2001. Southward extrusion of Tibetan crust and
679680681682	 Hodges, K. 2006. Climate and the evolution of mountains. <i>Scientific American</i>, August, 72-79. Hodges, K. V., Hurtado, J. M. & Whipple, K. X. 2001. Southward extrusion of Tibetan crust and its effects on Himalayan Tectonics. <i>Tectonics</i>, 20, 799-809.
 679 680 681 682 683 	 Hodges, K. 2006. Climate and the evolution of mountains. <i>Scientific American</i>, August, 72-79. Hodges, K. V., Hurtado, J. M. & Whipple, K. X. 2001. Southward extrusion of Tibetan crust and its effects on Himalayan Tectonics. <i>Tectonics</i>, 20, 799-809.
 679 680 681 682 683 684 	 Hodges, K. 2006. Climate and the evolution of mountains. <i>Scientific American</i>, August, 72-79. Hodges, K. V., Hurtado, J. M. & Whipple, K. X. 2001. Southward extrusion of Tibetan crust and its effects on Himalayan Tectonics. <i>Tectonics</i>, 20, 799-809. Hodges, K. V., Wobus, C., Ruhl, K., Schildgen, T. & Whipple, K. 2004. Quaternary deformation,
 679 680 681 682 683 684 685 	 Hodges, K. 2006. Climate and the evolution of mountains. <i>Scientific American</i>, August, 72-79. Hodges, K. V., Hurtado, J. M. & Whipple, K. X. 2001. Southward extrusion of Tibetan crust and its effects on Himalayan Tectonics. <i>Tectonics</i>, 20, 799-809. Hodges, K. V., Wobus, C., Ruhl, K., Schildgen, T. & Whipple, K. 2004. Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan Ranges. <i>Earth and</i>
 678 679 680 681 682 683 684 685 686 	 Hodges, K. 2006. Climate and the evolution of mountains. <i>Scientific American</i>, August, 72-79. Hodges, K. V., Hurtado, J. M. & Whipple, K. X. 2001. Southward extrusion of Tibetan crust and its effects on Himalayan Tectonics. <i>Tectonics</i>, 20, 799-809. Hodges, K. V., Wobus, C., Ruhl, K., Schildgen, T. & Whipple, K. 2004. Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan Ranges. <i>Earth and Planetary Science Letters</i>, 220, 379-389.
 678 679 680 681 682 683 684 685 686 687 	 Hodges, K. 2006. Climate and the evolution of mountains. <i>Scientific American</i>, August, 72-79. Hodges, K. V., Hurtado, J. M. & Whipple, K. X. 2001. Southward extrusion of Tibetan crust and its effects on Himalayan Tectonics. <i>Tectonics</i>, 20, 799-809. Hodges, K. V., Wobus, C., Ruhl, K., Schildgen, T. & Whipple, K. 2004. Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan Ranges. <i>Earth and Planetary Science Letters</i>, 220, 379-389.
 678 679 680 681 682 683 684 685 686 687 688 	 Hodges, K. 2006. Climate and the evolution of mountains. <i>Scientific American</i>, August, 72-79. Hodges, K. V., Hurtado, J. M. & Whipple, K. X. 2001. Southward extrusion of Tibetan crust and its effects on Himalayan Tectonics. <i>Tectonics</i>, 20, 799-809. Hodges, K. V., Wobus, C., Ruhl, K., Schildgen, T. & Whipple, K. 2004. Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan Ranges. <i>Earth and Planetary Science Letters</i>, 220, 379-389. Hövermann, J., Lehmkuhl, F., Pörtge, KH. 1993a. Pleistocene glaciations in Eastern and Central
 678 679 680 681 682 683 684 685 686 687 688 689 	 Hodges, K. 2006. Climate and the evolution of mountains. <i>Scientific American</i>, August, 72-79. Hodges, K. V., Hurtado, J. M. & Whipple, K. X. 2001. Southward extrusion of Tibetan crust and its effects on Himalayan Tectonics. <i>Tectonics</i>, 20, 799-809. Hodges, K. V., Wobus, C., Ruhl, K., Schildgen, T. & Whipple, K. 2004. Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan Ranges. <i>Earth and Planetary Science Letters</i>, 220, 379-389. Hövermann, J., Lehmkuhl, F., Pörtge, KH. 1993a. Pleistocene glaciations in Eastern and Central Tibet- Preliminary results of the Chinese-German joint expeditions. <i>Zeitscrift für</i>
 678 679 680 681 682 683 684 685 686 687 688 689 690 	 Hodges, K. 2006. Climate and the evolution of mountains. <i>Scientific American</i>, August, 72-79. Hodges, K. V., Hurtado, J. M. & Whipple, K. X. 2001. Southward extrusion of Tibetan crust and its effects on Himalayan Tectonics. <i>Tectonics</i>, 20, 799-809. Hodges, K. V., Wobus, C., Ruhl, K., Schildgen, T. & Whipple, K. 2004. Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan Ranges. <i>Earth and Planetary Science Letters</i>, 220, 379-389. Hövermann, J., Lehmkuhl, F., Pörtge, KH. 1993a. Pleistocene glaciations in Eastern and Central Tibet- Preliminary results of the Chinese-German joint expeditions. <i>Zeitscrift für Geomorphologie</i>, 92, 85-96.
 678 679 680 681 682 683 684 685 686 687 688 689 690 691 	 Hodges, K. 2006. Climate and the evolution of mountains. <i>Scientific American</i>, August, 72-79. Hodges, K. V., Hurtado, J. M. & Whipple, K. X. 2001. Southward extrusion of Tibetan crust and its effects on Himalayan Tectonics. <i>Tectonics</i>, 20, 799-809. Hodges, K. V., Wobus, C., Ruhl, K., Schildgen, T. & Whipple, K. 2004. Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan Ranges. <i>Earth and Planetary Science Letters</i>, 220, 379-389. Hövermann, J., Lehmkuhl, F., Pörtge, KH. 1993a. Pleistocene glaciations in Eastern and Central Tibet- Preliminary results of the Chinese-German joint expeditions. <i>Zeitscrift für Geomorphologie</i>, 92, 85-96.
 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 	 Hodges, K. 2006. Climate and the evolution of mountains. <i>Scientific American</i>, August, 72-79. Hodges, K. V., Hurtado, J. M. & Whipple, K. X. 2001. Southward extrusion of Tibetan crust and its effects on Himalayan Tectonics. <i>Tectonics</i>, 20, 799-809. Hodges, K. V., Wobus, C., Ruhl, K., Schildgen, T. & Whipple, K. 2004. Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan Ranges. <i>Earth and Planetary Science Letters</i>, 220, 379-389. Hövermann, J., Lehmkuhl, F., Pörtge, KH. 1993a. Pleistocene glaciations in Eastern and Central Tibet- Preliminary results of the Chinese-German joint expeditions. <i>Zeitscrift für Geomorphologie</i>, 92, 85-96. Hövermann, J., Lehmkuhl, F. & Süssenberger, H. 1993b. Neue Befunde zur Paläoklimatologie
 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 	 Hodges, K. 2006. Climate and the evolution of mountains. <i>Scientific American</i>, August, 72-79. Hodges, K. V., Hurtado, J. M. & Whipple, K. X. 2001. Southward extrusion of Tibetan crust and its effects on Himalayan Tectonics. <i>Tectonics</i>, 20, 799-809. Hodges, K. V., Wobus, C., Ruhl, K., Schildgen, T. & Whipple, K. 2004. Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan Ranges. <i>Earth and Planetary Science Letters</i>, 220, 379-389. Hövermann, J., Lehmkuhl, F., Pörtge, KH. 1993a. Pleistocene glaciations in Eastern and Central Tibet- Preliminary results of the Chinese-German joint expeditions. <i>Zeitscrift für Geomorphologie</i>, 92, 85-96. Hövermann, J., Lehmkuhl, F. & Süssenberger, H. 1993b. Neue Befunde zur Paläoklimatologie Nordafrikas und Zentralasiens. <i>Abh. d. Braunschweigischen Wiss. Ges.</i>, 43, 127-150.

- Hurtado, J. M., Hodges, K. V. & Whipple, K. X. 2001. Neotectonics of the Thakkhola graben and
- 696 implications for recent activity on the South Tibetan fault system in the central Himalaya.
- 697 *Geological Society of America Bulletin*, **113**, 222-240.
- Jade, S., Bhatt, B. C., Yang, Z., Bendick, R., Gaur, V. K., Molnar, P., Anand, M. B., and Kumar,
- 699 D. 2004. GPS measurements from the Ladakh Himalaya, India: Preliminary tests of plate-like or
- 700 continuous deformation in Tibet. *GSA Bulletin*, **116**, 1385-1391.
- Jamieson, R. A., Beaumont, C., Medvedev, S. & Nguyen, M. H. 2004. Crustal channel flows: 2.
- Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen. Journalof Geophysical Research, 109, B06407.
- 704
- Kamp, U., Growley, B. J., Khattak, G. A. & Owen, L. A. 2008. GIS-based landslide susceptibility
 mapping for the 2005 Kashmir Earthquake Region. *Geomorphology*, **101**, 631-642.
- 707

Keay, J. 1996. Explorers of the Western Himalayas, 1820-95: "When Men and Mountains Meet"
and "Gilgit Game". John Murray paperback, London, 571pp.

- 710
- Klute, F. 1930. Verschiebung der Klimagebiete der letzten Eiszeit. *Petermanns Mitteilungen*, *Erg.-H.*, **209**, 166-182.
- 713
- Kondo, H., Nakata, T., Akhtar, S. S., Wesnousky, S. G., Sugito, N., Kaneda, H., Khan, A. M.,
 Tsutsumi, H., Khattak, W. & Kausar, A. B. 2008. Long recurrence interval of faulting beyond the
 2005 Kashmir earthquake around the northwestern margin of the Indo-Asian collision zone. *Geology*, 36, 731-734.
- 718
- Koons, P. O., Zeitler, P. K., Chamberlain, C. P., Craw, D., & Meltzer, A. S. 2002. Mechanical
 links between erosion and metamorphism in Nanga Parbat, Pakistan Himalaya. *American Journal Science*, 302, 749-773
- 722
- Korup, O. & Montgomery, D. R. 2008. Tibetan plateau river incision inhibited by glacial
 stabilization of the Tsangpo gorge *Nature*, **455**, 786-789.
- 725
- Kuhle, M. 1985. Ein subtropisches Inlandeis als Eiszeitauslöser, Südtibet un Mt. Everest
 expedition 1984. Geogia Augusta, Nachrichten aus der Universität Gottingen, May, 1-17.

728	
729	Kuhle, M. 1986. The upper limit of glaciation in the Himalayas. GeoJournal, 13, 331-346.
730	
731	Kuhle, M. 1987. The Problem of a Pleistocene Inland Glaciation of the Northeastern Qinghai-
732	Xizang Plateau. In: Hövermann, J. & Wang, W. (eds) Reports of the Qinghai- Xizang (Tibet)
733	Plateau. Beijing, 250-315.
734	
735	Kuhle, M. 1988a. Geomorphological findings on the built-up of Pleistocene glaciation in
736	Southern Tibet and on the problem of inland ice. GeoJournal, 17, 457-512.
737	
738	Kuhle, M. 1988b. Topography as a fundamental element of glacial systems. GeoJournal, 17, 545-
739	568.
740	
741	Kuhle, M. 1990a. The cold deserts of high Asia (Tibet and contiguous mountains). GeoJournal,
742	20 , 319-323.
743	
744	Kuhle, M. 1990b. Ice marginal ramps and alluvial fans in semiarid mountains: convergence and
745	difference. In: Rachocki AH, Church M. (eds) Alluvial Fans: a field approach. John Wiley and
746	Sons, Chichester; 55-68.
747	
748	Kuhle, M. 1991. Observations supporting the Pleistocene inland glaciation of High Asia.
749	GeoJournal, 25 , 131-231.
750	
751	Kuhle, M. 1993. A short report of the Tibet excursion 14-A, Part of the XIII INQUA Congress
752	1991 in Beijing. GeoJournal, 29 , 426-427.
753	
754	Kuhle, M. 1995. Glacial isostatic uplift of Tibet as a consequence of a former ice sheet.
755	GeoJournal, 37 , 431-449.
756	
757	Kumar, S., Wesnousky, S. G., Rockwell, T. K., Briggs, R. W., Thakur, V. C. &
758	Jayangondaperumal, R. 2006. Paleoseismic evidence of great surface-rupture earthquakes along
759	the Indian Himalaya. Journal of Geophysical Research, B003309.
760	

761	Kumar, S., Wesnousky, S. G., Rockwell, T. K., Ragona, D., Thakur, V. C. & Seitz, G. G. 2001.
762	Earthquake recurrence and rupture dynamics of Himalayan Frontal Thrust, India. Science, 294,
763	2328-2331.
764	
765 766	Larson, K., Burgmann, R., Billham, R. & Freymueller, J. T. 1999. Kinematics of the India- Eurasian collision zone from GPS measurements. <i>Journal of Geophysical Research</i> , 104 , 1077-
767	1094
768	
769	Lavé, J. & Avouac, J. P. 2001. Fluvial incision and tectonic uplift across the Himalayas of Central
770	Nepal. Journal of Geophysical Research, 106, 26,561-26,592.
771	
772	Lehmkuhl F., Owen L. A. & Derbyshire E. 1998. Late Quaternary glacial history of northeastern
773	Tibet. Quaternary Proceedings, 6, 121-142.
774	
775	Lehmkuhl F. 1995. Geomorphologische Untersuchungen zum Klima des Holozäns und
776	Jungpleistozäns Osttibets. Göttinger Geographische Abhandlungen, 102, 1-184.
777	
778	Lehmkuhl F. 1997. Late Pleistocene, Late-glacial and Holocene glacier advances on the Tibetan
779	Plateau. Quaternary International, 38-39, 77-83.
780	
781	Lehmkuhl F. 1998. Extent and spatial distribution of Pleistocene glaciations in Eastern Tibet.
782	Quaternary International, 45-46, 123-134.
783	
784	Mason, K. 1929. Indus floods and Shyok glaciers. Himalayan Journal, 1, 10-29.
785	
786	Meigs, A., & Sauber, J. 2000. Southern Alaska as an example of the long-term consequences of
787	mountain building under the influence of glaciers. Quaternary Science Reviews, 19, 1543–1562.
788	
789	Misch P. 1935. Ein gefalterer junger Sandstein im Nordwest-Himalaya und sein Gefuge.
790	Festschrift zum 60 geburstag von Hans Stille. Verlag, Stuttgart.
791	
792	Mitchell, S. G. & Montgomery, D. R. 2006. Influence of a glacial buzzsaw on the height and
793	morphology of the Cascade Range in central Washington State, USA. Quaternary Research, 65,
794	96–107.

7	O	5
1	7	J

Molnar, P. & Tapponnier, P., 1978. Active tectonics of Tibet. Journal of Geophysical Research, , 5361-5375. Montgomery, D. R., Balco, G. & Willett, S. D. 2001. Climate, tectonics and the morphology of the Andes. Geology, 29, 579–582. Norin E. 1925. Preliminary notes on the Late Quaternary glaciation of the North Western Himalaya. Geografiska Annaler, 7, 165-194. Ouimet, W. B., Whipple, K. X., Royden, L. H., Sun, Z., & Chen, Z. 2007. The influence of large landslides on river incision in a transient landscape: Eastern margin of the Tibetan Plateau (Sichuan, China). Geological Society of America Bulletin, 119, 1462-1476. Owen, L. A. 1988. Wet-sediment deformation of Quaternary and Recent sediments in the Skardu Basin, Karakoram Mountains, Pakistan. In: Croots, D. (ed) Glaciotectonics. A. A. Balkema, Rotterdam, 123-147. Owen, L. A. 1988a. Neotectonics and glacial deformation in the Karakoram Mountains and Nanga Parbat Himalaya. Tectonophysics, 163, 227-265. Owen, L. A. 1989. Terraces, uplift and climate in the Karakoram Mountains, Northern Pakistan: Karakoram intermontane basin evolution. Zeitschrift für Geomorphologie, 76, 117-146. Owen, L. A. 1996a. High roads high risks. Geographical Magazine, 118, 1, 12-15. Owen, L. A. (1996b. Quaternary lacustrine deposits in a high-energy semi-arid mountain environment, Karakoram Mountains, northern Pakistan. Journal of Quaternary Science, 11, 461-483. Owen, L. A. 2004. Cenozoic evolution of global mountain systems. In: Owens, P. N. & Slaymaker, O. (eds) *Mountain Geomorphology*. Edward Arnold (Publishers) Ltd., London, 33-58.

- 828 Owen, L. A. 2006. Tectonic uplift and continental configurations. In: Scott, E. (ed) Encyclopedia
- 829 *of Quaternary Science*. Elsevier, Oxford, 2, 1011-1016.
- 830
- 831 Owen, L. A. 2008. How Tibet might keep its edge. *Nature*, **455**, 748-749.
- 832
- 833 Owen, L. A. & Derbyshire, E. 1988b. Glacially deformed diamictons in the Karakoram Mountains,
- 834 Northern Pakistan. In: Croots, D. (ed) Glaciotectonics. A. A. Balkema, Rotterdam, 149-176.
- 835
- 836 Owen L. A. & Derbyshire, E. 1993. Quaternary and Holocene intermontane basin sedimentation
- 837 in the Karakoram Mountains. *In:* Shroder, J. F. (ed) *Himalaya to the Sea: Geology*,
 838 *Geomorphology and the Quaternary*. Routledge, London, 108-131.
- 839
- Wen, L. A. & Sharma, M. C. 1998. Rates and magnitudes of paraglacial fan formation in the
 Garhwal Himalaya: implications for landscape evolution. *Geomorphology*, 26, 171-184.
- 842
- 843 Owen, L. A., Benn, D. I., Derbyshire, E., Evans, D. J. A., Mitchell, W. A., Thompson, D.,
 844 Richardson, S., Lloyd, M. & Holden, C. 1995. The geomorphology and landscape evolution of the
- Lahul Himalaya, Northern India. Zeitschrift für Geomorphologie, **39**, 145-174.
- 846
- 847 Owen, L. A., Sharma, M. & Bigwood, R. 1996. Landscape modification and geomorphological
 848 consequences of the 20 October 1991 earthquake and the July August 1992 monsoon in the
 849 Garhwal Himalaya. *Zeitschrift für Geomorphologie*, **103**, 359-372.
- 850
- Wen, L. A., Kamp, U., Spencer, J. Q. & Haserodt, K. 2002. Timing and style of Late Quaternary
 glaciation in the eastern Hindu Kush, Chitral, northern Pakistan: a review and revision of the
 glacial chronology based on new optically stimulated luminescence dating. *Quaternary International*, 97-98, 41-56.
- 855
- Owen, L. A., Finkel, R. C., Ma, H., Spencer, J. Q., Derbyshire, E., Barnard, P. L. & Caffee, M.
 W. 2003. Timing and style of Late Quaternary glaciations in NE Tibet. *Geological Society of America Bulletin*, 11, 1356-1364.
- 859
- 860 Owen, L. A., Finkel, R. C., Ma H. & Barnard, P. L. 2006. Late Quaternary landscape evolution in
- the Kunlun Mountains and Qaidam Basin, Northern Tibet: a framework for examining the links

862	between glaciation, lake level changes and alluvial fan formation. Quaternary International, 154-
863	155 , 73-86.
864	
865	Owen, L. A., Caffee, M. W., Finkel, R. C. & Seong, B. Y. 2008. Quaternary glaciations of the
866	Himalayan-Tibetan orogen. Journal of Quaternary Science. 23, 513-532.
867	
868	Owen, L. A., Kamp, U., Khattak, G. A., Harp, E. L., Keefer, D. K. & Bauer, M. A. 2008.
869	Landslides triggered by the October 8, 2005, Kashmir Earthquake. Geomorphology, 94, 1-9.
870	
871	Paffen, K. H., Pillewizer, W. & Schneide, H. J. 1956. Forschungen im Hunza-Karakoram.
872	<i>Erdkunde</i> , 10 , 1-33.
873	
874	Penck, A. & Bruckner, E. 1909. Die Alpen im Eiszeitalter. Tauchnitz, Liepzig.
875	
876	Porter, S. C. 1970. Quaternary glacial record in the Swat Kohistan, West Pakistan. Geological
877	Society of America Bulletin, 81, 1421-1446.
878	
879	Pratt, J.H. 1859. On the deflection of the plumb line in India. Philosophical Transactions of the
880	Royal Society of London, 149, 745-796.
881	
882	Prell, W. L. & Kutzbach, J. F. 1992. Sensitivity of the Indian monsoon to forcing parameters and
883	implications for its evolution. Nature, 360, 647-652.
884	
885	Prell, W. L. & Kutzbach, J. F. 1987. Monsoon variability over the past 150,000 yr. Journal of
886	Geophysical Research, 92, 8411–8425.
887	
888	Raymo, M. E., Ruddiman, W. F. & Froelich, P. N. 1988. Influence of late Cenozoic mountain
889	building on ocean geochemical cycles. Geology, 16, 649-653.
890	
891	Raymo, M. E. & Ruddiman, W. F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359,
892	117-122.
893	

894	Reynolds, J. M. 2000. On the formation of supraglacial lakes on debris-covered glaciers. In:
895	Nakawo, M., Raymond C. F. & Fountain, A. (eds) Debris-Covered Glaciers. International
896	Association of Hydrological Sciences Publication, 264, 153-161.
897	
898	Richardson, S. D. & Reynolds, J. M. 2000. An overview of glacial hazards in the Himalayas.
899	Quaternary International, 65/66, 31–47.
900	
901	Röthlisberger, F. & Geyh, M. 1985. Glacier Variations in Himalayas and Karakoram. Zeitschrift
902	für Gletscherkunde und Glazialgeologie, 21 , 237-249.
903	
904	Ruddiman, W. F. 1997. (ed.) Tectonic uplift and climate change. Plenum Press, New York.
905	
906	Ruddiman, W. F. & Kutzbach, J. E. 1989: Forcing of Late Cenozoic Northern Hemisphere
907	climate by plateau uplift in southern Asia and the America west. Journal of Geophysical
908	Research, 94, 409–427.
909	
910	Ruddiman, W. F. & Kutzbach, J. E. 1991. Plateau uplift and climate change. Scientific American,
911	264 , 42-51.
912	
913	Ryder, J.M. 1971a. Some aspects of the morphology of paraglacial alluvial fans in south-central
914	British Columbia. Canadian Journal of Earth Sciences, 8, 1252-1264.
915	
916	Ryder, J. M., 1971b. The stratigraphy and morphology of paraglacial alluvial fans in south-central
917	British Columbia. Canadian Journal of Earth Sciences, 8, 279-298.
918	
919	Schäfer, J. M., Tschudi, S., Zhizhong, Z., Xihao, W., Ivy-Ochs, S., Wieler, R., Baur, H., Kubik P.
920	W. & Schluchter C. 2002. The limited influence of glaciation in Tibet on global climate over the
921	past 170,000 yr. Earth and Planetary Science Letters, 194, 287-297.
922	
923	Searle, M.P. 1991. Geology and Tectonics of the Karakoram Mountains. John Wiley and Sons,
924	Chichester.
925	
 920 921 922 923 924 925 	 w. & Schluchter C. 2002. The limited influence of glaciation in Tibet on global climate over past 170,000 yr. <i>Earth and Planetary Science Letters</i>, 194, 287-297. Searle, M.P. 1991. Geology and Tectonics of the Karakoram Mountains. John Wiley and Sc Chichester.

Seeber, L. & Gornitz, V. 1983. River profiles along the Himalayan arc as indicators of active
tectonics. *Tectonophysics*, 92, 335-367.

120	
929	Seong Y. B., Owen, L. A., Bishop, M. P., Bush, A., Clendon, P., Copland, P., Finkel,. R., Kamp,
930	U. & Shroder, J. F. 2008. Reply to comments by Matthias Kuhle on "Quaternary glacial history of
931	the central Karakoram". Quaternary Science Reviews, 27, 1656-1658.
932	
933	Seong Y. B., Bishop, M. P., Bush, A., Clendon, P., Copland, P., Finkel, R., Kamp, U., Owen, L.
934	A. & Shroder, J. F. 2009a. Landforms and landscape evolution in the Skardu, Shigar and Braldu
935	Valleys, Central Karakoram. Geomorphology, 103, 251-267.
936	
937	Seong Y. B., Owen, L. A., Yi, C., Finkel. R. C. & Schoenbohm, L. 2009b. Geomorphology of
938	anomalously high glaciated mountains at the northwestern end of Tibet: Muztag Ata and Kongur
939	Shan. <i>Geomorphology</i> , 103 , 227-250.
940	
941	Shaw, R. B. 1871 (reprinted 1984). Visits to High Tartary, Yarkard and Kashgar. Oxford
942	University Press, Hong Kong, 432 pp.
943	
944	Shi, Y. 1992. Glaciers and glacial geomorphology in China. Zeitschrift für Geomorphologie, 86,
945	19-35.
946	
947	Shi, Y., Yu, G., Liu, X., Li, B. & Yao, T. 2001. Reconstruction of the 30-40 ka BP enhanced
948	Indian monsoon climate based on geological records from the Tibetan Plateau. Paleogeography,
949	Paleoclimatology, Paleoecology, 169, 69–83.
950	
951	Shroder, J. F., Khan, M. S., Lawrence, R. D., Madin, I. P. & Higgins, S. M., 1989. Quaternary
952	glacial chronology and neotectonics in the Himalaya of northern Pakistan. Geological Society of
953	America Special Paper, 232 , 275-294.
954	
955	Skinner, B. J., Porter, S. C. & Park, J. 2004. Dynamic Earth: An introduction to physical geology.
956	John Wiley and Sons, Chichester, 584 pp.
957	
958	Small, E. E. & Anderson, R. S. 1998. Pleistocene relief production in Laramide Mountain Ranges,
959	western U.S. Geology, 26, 123–126.
960	

961	Spotila, J. A., Busher, J. T., Meigs, A. J. & Reiners, P. W. 2004. Long-term glacier erosion of
962	active mountain belts: example of the Chugach-St. Elias Range, Alaska. Geology, 32, 501-504.
963	
964	Surell, A., 1851. Etude sur les Torrents des Hautes Alpes. Paris.
965	
966	Tapponnier, P. & Molnar, P. 1976. Slip-line theory and large-scale continental tectonics. Nature,
967	264 , 319-324.
968	
969	Tapponnier, P. & Molnar, P. 1977. Active faulting and tectonics in China. Journal of Geophysical
970	Research, 82, 2095-2930.
971	
972	Tapponnier, P., Xu, Z., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., & Yang, J. 2001. Oblique
973	stepwise rise and growth of the Tibet plateau. Science, 294 , 16/1-16/7.
974	
975	Trinkler, E. 1930. The Ice-Age on the Tibetan Plateau and in the adjacent region. <i>Geography</i>
9/6	Journal, 75 , 225-232.
9//	
978	USGS 2008. Earthquake Hazard program: Magnitude 7.9 – Eastern Sichuan, China.
9/9	http://eartnquake.usgs.gov/eqcenter/eqintnenews/2008/us2008ryan/#summary
900	Van dar Waard I. Owan I. A. Tannanniar D. Viwai V. Karwen E. Finkal D. C. & Darnard D.
901 00 2	Van der woerd, J., Owen, L. A., Tapponner, P., Aiwer A., Kervyn, F., Finker, K. C. & Barnard, P.
902	L. 2004. Grant, M~8 earthquake-triggered, ice avalanches in the eastern Kumun Shan (Northern Tibet): abaracteristics, nature and dynamics. Coological Society of America Pulletin, 116 , 304,406
905	Tibet). Characteristics, nature and dynamics. Geological Society of America Bulletin, 110, 394-400.
985	Wesnousky S. G. Kumar, S. Mohindra, R. & Thakur, V. C. 1909, Holocene slip, rate of the
986	Himalayan Frontal Thrust of India Observations near Debra Dun <i>Tectonics</i> 18 967-976
987	Timalayan Frontal Findst of Incla, Observations near Denia Dan. Tectomes, 10, 907-970.
988	Wissmann, H. 1959. Die heutige Vergletscherung und Schneegrenze in Hochasien mit Hinweisen
989	auf die Vergletscherung der letzten Fiszeit Akad D Wiss U.d. Lit Abh D Math-Nat Wiss Kl
990	14 121-123
991	
992	Wobus C.W. Hodges K.V. & Whinnle, K.X. 2003. Has focused depudation sustained active
993	thrusting at the Himalayan topographic front? <i>Geology</i> 31 861-864
994	

995	Yang, X., Zhu, Z., Jaekel, D., Owen, L. A. & Han, J. 2002. Late Quaternary palaeoenvironmental
996	change and landscape evolution along the Keriya River, Xingjiang, China: the relationship
997	between high mountain glaciation and landscape evolution in foreland desert regions. Quaternary
998	International, 97-98, 155-166.
999	
1000	Yin, A. 2000. Modes of Cenozoic east-west extension in Tibet suggesting a common origin of
1001	rifts in Asia during the indo-Asian collision. Journal of Geophysical Research, 105, B9, 21,745-
1002	21,759.
1003	
1004	Yin, A. & Harrison, T. M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual
1005	Reviews of Earth and Planetary Science, 28, 211-280.
1006	
1007	Zeitler, P. K. 1985. Cooling history of the NW Himalaya. Tectonics, 4, 127-151.
1008	
1009	Zeitler, P. K., Meltzer, A. S., Koons, P. O., Craw, D., Hallet, B., Chamberlain, C. P., Kidd, W. S.
1010	F., Park, S. K., Seeber, L., Bishop, M. & Shroder, J. F. 2001. Erosion, Himalayan geodynamics
1011	and the geomorphology of metamorphism. GSA Today, 11, 4-8
1012	
1013	Zhang, X. & Shi, Y. 1980. Changes of the Batura Glacier in the Quaternary and recent times.
1014	Professional Papers on the Batura Glacier, Karakoram Mointains. Science Press, Beijing, 173-190.
1015	
1016	Zheng, B., 1989. Controversy regarding the existence of a large ice sheet on the Qinghai-Xizang
1017	(Tibetan) Plateau during the Quaternary Period. Quaternary Research, 32, 121-123.
1018	
1019	Zheng, B. & Rutter, N. 1998. On the problem of Quaternary glaciations, and the extent and
1020	patterns of Pleistocene ice cover in the Qinghai-Xizang (Tibet) plateau. Quaternary International,
1021	45-46 , 109-122.
1022	
1023	
1024	
1025	
1026	

1027 Figures

1028 Fig. 1. View of an alluvial fan in at Tigarc in the Nubra valley drawn by Drew (1875). (a)

1029 View from the mountains behind Charasa and (b) a profile view looking up the valley.

1030

1031 Fig. 2. Selected reconstructions for the extent of glaciation across Tibet and the bordering 1032 mountains for the maximum extent of glaciation during the Last Glacial (after Owen et 1033 al. 2008). (a) Klute's (1930) reconstruction based on a temperature depression of 4°C, 1034 with a shift of climatic zones to the south and an intensification of atmospheric 1035 circulation such that precipitation increased towards the dry areas of central Asia. (b) 1036 Frenzel's (1960) reconstruction based on the detailed work of Wissmann (1959) who 1037 evaluated the observations of the earliest explorers. (c) Kuhle's (1985) reconstruction 1038 based on field observations and extrapolation of large ELA depressions (>1000 m) from 1039 the margins of Tibet into the interior regions. (d) Reconstruction of Shi (1992) and Shi et 1040 al. (1992) based on detailed field mapping of glacial and associated landforms and 1041 sediments.

1042

Fig. 3. Percentage of landform types in three valleys in the Lahul Himalaya, which were deglaciated at different times (after Owen *et al.* 1995). The data show an increase in paraglacial fans, screes, and terraces and a decrease of moraines with increasing age of deglaciation.

1047

Fig. 4. Digital elevation model of Tibet and the bordering mountains showing major faults and sutures (adapted from Owen 2004, compiled from Searle 1991; Cunningham *et* 1050 al. 1996; Chung et al. 1998; Yin et al. 1999; Yin and Harrison 2000; Blisniuk et al. 2001; 1051 and Hurtado et al. 2001). Estimates of Late Quaternary strike-slip, convergent, and extensional rates are shown in mm a⁻¹ (after Larson *et al.* 1999 and Tapponnier *et al.* 1052 1053 2001). AKMS – Ayimaqin-Kunlun-Mutztagh Suture; ASRR – Ailao Shan-Red River 1054 Shear Zone; AF – Altai Fault; ATF – Altyn Tagh Fault; BNS – Bangong Nujiang Suture; 1055 GTFS – Gobi-Tien Shan Fault System; HF – Haiyuan fault; ITS – Indus Tsangpo Suture; 1056 JHF – Junggar Hegen Fault; JS- Jinsha Suture; KF - Karakoram Fault; KJFZ – 1057 Karakoram Jiali Fault Zone: KLF – Kunlun fault: KS – Kudi Suture: LSF – Longmen 1058 Shan Fault; MBT – Main Boundary Thrust; MCT – Main Central Thrust; MKT – Main 1059 Karakoram Thrust (Shyok Suture Zone); MMT – Main Mantle Thrust; NB – Namche 1060 Barwa; NGF – North Gobi fault; NP – Nanga Parbat; NQS – North Qilian Suture; NTSF 1061 - North Tien Shan fault; STSF - South Tien Shan fault; TFF - Talus-Fergana Fault; XF -1062 Xianshuihe Fault.

1063

1064 Fig. 5. Model of relief generation via glacial erosion for the case of mountain erosion 1065 after Small and Anderson (1998; modified from Molnar and England 1990). Center panel represents initial condition. When erosion (shaded area) is spatially uniform ($E_s = \hat{E}$), the 1066 1067 sum of erosionally-driven rock uplift ($U_{\hat{E}}$) and summit erosion (E_{S}) results in lower 1068 summit elevations (ΔZ_s) (left panel). When erosion is spatially variable (right panel), 1069 changes in summit elevation are positive because rock uplift is greater than summit 1070 erosion ($\Delta Z_{\rm S} = E_{\rm S} + U_{\rm \hat{E}}(x,y)$). Rock uplift is the same in each case because average 1071 erosion (Ê), which drives rock uplift, is equal (shaded areas are the same size). The 1072 present geophysical relief (\dot{R}) is the mean elevation difference between a smooth surface 1073 connecting the highest points in the landscape (dashed line) and the current topography. It 1074 represents the average of valley erosion (E_V) minus summit erosion calculated at each 1075 point in the landscape, including summit flats.

1076

1077 Fig. 6. Glacial buzz-saw model. (a) The present and minimum snowline elevations during 1078 the Last Glacial plotted along a topographic transect along the cordillera of North and 1079 South America illustrating the positive relationship between topography and snowline 1080 elevation (after Broecker & Denton 1990; Skinner et al. 2004). (b) Frequency 1081 distribution of altitude and slope angles for selected physiographic areas within the 1082 western syntaxis of the Himalaya (DD – dissected portion of Deosai Plateau, NP – Nanga 1083 Parbat, G – Ghujerab mountains (northern Karakoram), SN – area north of Skardu) after 1084 Brozović et al. (1997). The arrows on the horizontal axis indicate the mean elevation for 1085 each region; values are inside the graphs. The dark vertical lines running from top to 1086 bottom in the graphs show the range of snowline altitudes for each region. The three subhorizontal gray lines show the 25th (lower line), 50th, and 75th (upper line) percentile 1087 1088 of slope distribution as a function of altitude for each region. The light gray shaded areas 1089 on the slope distribution curves highlight the regions of moderate slopes that generally coincide with the modal elevations. These graphs illustrate the strong relationship 1090 1091 between snowline elevation and topography, suggesting that glaciation places limits on 1092 topography.

Fig. 7. Schematic representation illustrating the dynamics of a tectonic aneurysm, shown
at a mature stage based on Nanga Parbat (see text for explanation; after Zeitler *et al.*2001).

1097

Fig. 8. Schematic section across the Himalaya and southern Tibet illustrating channel flow and extrusion of the channel, and the variation of precipitation, mean hillslope angle, relative stream channel steepness, and annual monsoon precipitation (adapted from Hodges 2006).

1102

1103 Fig. 9. Possible mechanism for the preservation of the edge of southeast Tibet as 1104 suggested by Korup and Montgomery (2008) and adapted from Owen (2008) with the 1105 following is the sequence of events: 1. Glacier advance dams a river; 2. The deposition of 1106 sediments in the resulting upstream lake and stream both protects the valley floor from 1107 erosion and reduces the stream's erosive power; 3. Streams draining through the glacier 1108 and/or moraine are confined, so stream flow is strong and downstream erosion increases; 1109 4. Stream incision into the bedrock essentially weakens the crust and enhances bedrock 1110 uplift to the surface; 5. As streams travel farther from the knick point, smaller gradients 1111 reduce their erosive power; 6. The glacier retreats, but the events are repeated numerous 1112 times as glaciers advance and retreat in response to climate change. The repetition of this 1113 sequence of events maintains equilibrium between erosion and bedrock uplift, essentially 1114 preserving the topography of the margin of southeast Tibet.

1116 Fig. 10. The Hattian Bala landslide triggered by the 2005 Kashmir earthquake. The 1117 landslide buried four villages resulting in >450 fatalities, blocked two streams, and 1118 formed two lakes.

1119

1120 Fig. 11. The relationship between landslides of known age and curves of monsoon 1121 intensity and precipitation based on lake cores (after Dortch et al. 2009). The thin gray 1122 intervals indicate enhanced monsoon phases and subsequent increased precipitation based 1123 on lake core data taken from Gasse et al. (1996). The histogram uses a 2 ka bin width for 1124 landslide occurrence. Dashed horizontal lines on right side show maximum age ranges of 1125 rock avalanche clusters crossing the modeled monsoon intensity curve. Thick gray bar is 1126 period of enhanced monsoon precipitation between 30 and 40 ka inferred form lake 1127 terraces, pollen, lake cores, and ice cores by Shi et al. (2001). The three curves in the 1128 proxy data section show the simulated monsoon pressure index (DM percentage, solid 1129 line) for the Indian Ocean, simulated changes in precipitation (P percentage, thick black 1130 dashed line) in southern Asia, and variations in Northern Hemisphere solar radiation (DS 1131 percentage, thin gray dashed line) after Prell and Kutzbach (1987).

1132

1133

FIGURE 1 A & B

Figure 2

Figure 4

Figure 10

