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Abstract

A comparative study to review eight different deformable contour methods (DCMs) of snakes and level set methods applied to the
medical image segmentation is presented. These DCMs are now applied extensively in industrial and medical image applications. The
segmentation task that is required for biomedical applications is usually not simple. Critical issues for any practical application of DCMs
include complex procedures, multiple parameter selection, and sensitive initial contour location. Guidance on the usage of these methods
will be helpful for users, especially those unfamiliar with DCMs, to select suitable approaches in different conditions. This study is to
provide such guidance by addressing the critical considerations on a common image test set. The test set of selected images offers different
and typical difficult problems encountered in biomedical image segmentation. The studied DCMs are compared using both qualitative
and quantitative measures and the comparative results highlight both the strengths and limitations of these methods. The lessons learned
from this medical segmentation comparison can also be translated to other image segmentation domains.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Medical image segmentation; Deformable contour method; Snake; Level set; Comparative study
Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
0262-8

doi:10.

* Co
E-m
1.1. Snakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
1.2. Level set methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
2. Deformable contour methods for comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

2.1. Balloon snake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
2.2. Topology snake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
2.3. Distance snake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
2.4. Gradient vector flow snake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
2.5. Original level set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
2.6. Geodesic active contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
2.7. Area and length active contour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
2.8. Constrained optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
856/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

1016/j.imavis.2007.07.010

rresponding author. Tel.: +1 912 921 7360; fax: +1 912 921 7362.
ail address: helei@mail.armstrong.edu (L. He).

mailto:helei@mail.armstrong.edu


142 L. He et al. / Image and Vision Computing 26 (2008) 141–163
3. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.1. Image test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.2. Evaluation measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.3. Implementation and experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.3.1. Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.3.2. Parameter setting and tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.3.3. Different initializations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4. Experimental results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.1. MRI knee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.2. Blood cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.3. MRI brain (sulci contour) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.4. MRI brain (corpus callosum contour) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.5. Ultrasound pig heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.6. CT kidney salt and pepper noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.7. CT kidney Gaussian noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.8. Different initializations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.9. Error measure results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.10. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
1. Introduction

Image segmentation is one of the first stages in many
image analysis applications. In the domain of biomedical
image processing, correct image segmentation would aid
physicians greatly in providing visual means for inspection
of anatomic structures, identification of disease and track-
ing of its progress, and even for surgical planning and sim-
ulation. The bulk of the earlier segmentation methods are
roughly categorized, based on the image features used for
segmentation, into two basic approaches, the edge-based
and region-based methods [18]. The features used in one
approach are usually complementary to the other in seg-
mentation. Therefore, more recent methods, such as the
deformable contour methods (DCMs), include the key con-
cepts of both the edge-based and region-based approaches.
The DCMs can be sub-categorized according to the various
mechanisms used for carrying out the contour deformation
process: snakes and level set methods. Each of the mecha-
nisms used in these methods are meant to incorporate a
means to handle specific problems and provide the desired
features to effectively segment target contours from the
image data.

To incorporate powerful, and useful, concepts of energy,
force, velocity, and curve constraints, DCM-based solu-
tions are highly analytical and involve extensive numerical
computations. All these factors make the solutions less
intuitive for the practitioners and hard to compare the
methods in terms of their applicability and computational
requirements. This paper reviews the strengths and limita-
tions of eight major DCMs and reports on how these meth-
ods perform in terms of dealing with some of the toughest
image processing challenges in biomedical images. Even
though the focus of the comparison is on biomedical seg-
mentation, the lessons learned from the comparison can
be translated to other image segmentation domains. In
what follows, we shall first provide an overview of the
DCM methods before we get into the details of compara-
tive study.

1.1. Snakes

The original snake was introduced by Kass et al. [1],
in which the contour deforms to minimize the contour
energy that includes the internal energy from the contour
and the external energy from the image. Using a varia-
tional method, the internal and external energy are con-
verted to internal and external forces to deform the
contour. During the contour deformation process, the
curvature-based internal force maintains the contour
smoothness, while the gradient-based external force
attracts the contour to the desired boundaries in the
image. The deformation finally stops when the contour
reaches an energy minimum (force balance). Note, the
original snake was proposed as an interactive method,
which requires expert guidance on the snake initialization
and the selection of correct deformation parameters. It is
important to understand several underlying concepts that
identify limitations of the original snake method. First,
the magnitude of the external force dies out rapidly when
moving away from the image edges or boundaries. This
implies that the capture range of the original snake is
small. Secondly, image noise can cause the contour to
be easily attracted to a local energy minimum, which
does not correspond to the ground truth. Therefore, to
reach the desired boundary, the initial contour should
lie close to the desired boundary to avoid these hazards.
Furthermore, the original snake method is a parametric
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method and the contour cannot change topology during
its deformation process without an additional mecha-
nism. With these limitations, a number of deformable
contour methods have been proposed to improve the
original snake, such as snake variations [2–4,10,20,22,
25,26,37,39,45–47].

In [2–4], different edge-based external forces are pro-
posed to overcome the sensitivity of the initial condition
in [1] by enhancing the effect of image edges. The methods
in [10] and [37] provide different mechanisms to enable the
contour topology to change during the deformation pro-
cess. Besides the topological constraint, the author of
[37] proposes algorithms to apply new physical constraints
on the snake in order to control the contour geometry
and deformation. The methods of [25,26] deform the con-
tour with the constraint from a priori knowledge of the
object shape, which helps the deformable contour avoid
being trapped by spurious edges. In [20,22], the authors
try to utilize region-based image features or combine them
with the edge-based features as the external forces in
order to overcome the image noise. However, [20] still
requires the initial contour to be close to the desired
boundary and it cannot handle the contour topological
changes. Starting from multiple seeds, [22] performs
image segmentation on the whole image by doing bound-
ary deformation and region merging iteratively; however,
it cannot handle contour splitting topology change. In
order to relieve the sensitivity to initialization and accu-
rately locate the global minimum, dynamic programming
approach was applied in [45–47] to replace the variational
method to minimize the contour energy. These
approaches also have the advantage of avoiding the esti-
mation of higher order derivatives and improve the
numerical stability.

1.2. Level set methods

Different from the snake energy-based framework, the
original level set method [5] was first proposed as a numer-
ical technique that tracks an evolving contour. The evolv-
ing contour deforms with a speed F that is based on the
contour curvature and image features like gradient. The
curvature component in the speed keeps the contour prop-
agating smoothly, which performs like the internal energy
in snakes. Additionally, an artificial speed term, obtained
from the image feature, is synthesized to stop the front,
i.e., the contour, at the desired boundary. After the original
level set method [5] was proposed, which had no energy
minimization, some researchers applied the level set formu-
lation with a contour energy minimization in order to
obtain a good convergence. This modification produced a
relaxed initial condition requirement and the ability to han-
dle the contour topology changes naturally. The modifica-
tion resulted in various geodesic deformable models
[8,9,11,19,23,24,27–29,32,33].

Starting with [8,27], the authors prove that the minimi-
zation of the contour energy is equivalent to the minimiza-
tion of the contour length weighted by an edge detection
function in the Riemannian space. In [28], a review and
comparison on the level set methods in [5,8,27] is given
and a new geodesic active contour method for multiple
objects segmentation is introduced. However, the multiple
objects can only be segmented if the initial level sets are
close to the objects. The method in [29] tries to locate the
global energy minimum of a contour between two end
points that are pre-selected on the true boundary. The
methods in [32,33,19] integrate the a priori knowledge of
the object shape into the level set formulation in order to
constrain the contour deformation within an admissible
range. In [11,23,24,9], region-based image features are used
alone or united with the edge-based features to construct
the energy to minimize. Similar to the edge-based methods,
the energy minimization is implemented in a level set
framework. The method in [23] handles image segmenta-
tion using only region-based image features with the
assumption that only object and background exist in the
image. In [24], the authors focus on supervised texture seg-
mentation and require a priori knowledge of the object tex-
ture pattern. In [9], the contour energy minimization is
formulated as a constrained optimization problem with a
constraint indicating the degree of contour interior
homogeneity.

The selected approaches for the study are chosen from
the two subsections of deformable contour methods,
snakes (balloon snake [2], topology snake [10], distance
snake [3], and gradient vector flow snake [4]) and level set
methods (original level set [5], geodesic active contour [8],
area and length active contour [11], and a constrained opti-
mization [9]). We did not consider other methods incorpo-
rating with the a priori knowledge of object shape
[15–17,21], random process [12–14], or human interaction
[48,49] in the contour deformation processes because they
are generally application specific and cannot be compared
fairly. Although several surveys on deformable contour
methods have been published [18,28,30,31,36,38], to our
knowledge, none of them focus on comparing them exper-
imentally, specifically in the area of medical image segmen-
tation. In contrast with other surveys that only describe
and compare different approaches qualitatively, this study
provides both qualitative and quantitative comparisons.
In addition, as a starting point, the lessons learned from
this medical segmentation comparison can also be general-
ized to other image segmentation domains. Our goal is to
provide a common platform to compare the deformable
contour methods that can be applied automatically in a
set of medical images, with the motivation coming from
the practical needs of medical users. The remainder of this
paper is structured as follows: Section 2 briefly remarks on
the variations and nuances of the selected methods
involved in the experimental comparisons. Section 3 is an
overview of the experimental plan and procedure while
Section 4 provides the experimental results and evalua-
tions. Finally, the conclusion of the experiments is drawn
in Section 5.
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2. Deformable contour methods for comparison

This section briefly introduces the selected set of deform-
able contour methods, which includes balloon snake,
topology snake, distance snake, gradient vector flow snake,
original level set, geodesic active contour, area and length
active contour, and a constrained optimization method.

2.1. Balloon snake

The original snake [1] is a deformable contour based on
minimizing the energy functional

EðvÞ ¼
Z

w1jv0ðsÞj2 þ w2jv00ðsÞj2 þ QðvðsÞÞds: ð1Þ

In Eq. (1), v(s) = (x(s), y(s)) represents the contour in an
image I(x,y) with x and y being coordinates, and
s 2 [0, 1] is a generic parametric coordinate. The compo-
nent

R
w1jv0ðsÞj2 þ w2jv00ðsÞj2 ds is the internal energy of

the contour with w1 and w2 being the contour elasticity
and rigidity weights. The component

R
QðvðsÞÞds is the

external energy of the contour with Q(v(s)) = �j$P(v)j2,
and P ¼ Gr0

� I being the Gaussian (variance r0) filtered
image of the input image I. Using the variational method,
it can be proven that the contour satisfies the following Eu-
ler–Lagrange equation if E in Eq. (1) reaches a local
minimum.

�ðw1v0Þ0 þ ðw2v00Þ00 ¼ FðvÞ; vð0Þ;v0ð0Þ;vð1Þ;v0ð1Þ being given:

ð2Þ
In Eq. (2), �(w1v 0) 0 + (w2v00)00 is the internal force and F(v)
is the external force with F = �$Q(v). Since the energy
functional is not convex, suppose the initial contour is close
to the desired boundary (i.e., a local minimum of energy),
the contour evolution process can then be described as

ov
ot¼ðw1v0Þ0 � ðw2v00Þ00 þFðvÞ
vð0;sÞ¼ v0ðsÞ; vðt;0Þ¼ v0ð0Þ; vðt;1Þ¼ v0ð1Þ; v0ðt;0Þ¼ v00ð0Þ; v0ðt;1Þ¼ v00ð1Þ

(
;

ð3Þ

where the contour v(s) = (x(s), y(s)) is considered to be a
function of time written as v(s, t) = (x(s, t), y(s, t)). When
ov
ot ¼ 0, contour reaches the desired boundary and stops
deformation. Balloon snake [2] enables the initial contour
to be located far from the desired boundary by adding a
constant force, in the external force, to inflate the contour’s
growth. The balloon snake uses the modified force function
of

F ðvÞ ¼ k1
~N � k

rQ
jrQj : ð4Þ

In Eq. (4), ~N is the normal unit vector with magnitude k1

(inflation force), and k is the external force weight.

2.2. Topology snake

To overcome the topology problem of snakes, McIner-
ney and Terzopoulos [10] designed a set of topology chang-
ing rules to be used during the balloon snake’s
deformation. Using the simplicial decomposition, the
image space is partitioned into a set of triangular cells.
The snake is then approximated as a polygon with the ver-
tices being the snake contour points on the edges of the tri-
angles. The triangles can be classified as inside, outside, or
intersecting with the contour according to their positions
relative to the contour. The triangles intersecting with the
contour can be used to trace the contour and check the
contour topology conveniently during contour deforma-
tions. Once contour crossings exist, either the contour
can be split or contour segments can be merged together
by reconnecting and disconnecting the contour points on
the triangles.

2.3. Distance snake

Cohen and Cohen [3] used a finite element method to
implement a deformation strategy called the distance
snake. Compared with the original snake, the external
force field on the image is constructed also as the negative
of the external energy gradient, which is the distance from
each point to its closest edge points in the image. The new
external energy enables a large magnitude for the external
force everywhere in the image. Thus, the distance snake
has a large capture range, i.e., the initial contour can be
located far away from the desired boundary if there are
no spurious edges along the way. By using a finite element
method, the deformable contour is represented as a contin-
uous curve in the form of weighted sum of local polynomial
basis functions. The result has good stability and conver-
gence in the energy minimization process. The distance
snake uses the external force function of

F ¼ �rQðvÞ: ð5Þ
In Eq. (5), Q(v) = d(v) and d(v) is the smallest normalized
Euclidean distance from v to an edge point with the edge
point identified by a thresholded gradient.

2.4. Gradient vector flow snake

In [4], Xu and Prince discussed the shortcomings of the
original snake and distance snake from the external force
field construction. The external force field, for the original
and distance snake, is irrotational and based on the contour
points and the closest edge points in the contour points’ nor-
mal direction. This limits the deformation into boundary
concavities because there is no external force pointing into
the concavities inside. GVF snake constructs a new external
force field which is not entirely irrotational, which means the
new external force points inside in concavities. Additionally,
the magnitudes of the external force are the same over the
whole image (field), which means a large capture range for
the gradient vector flow (GVF) snake.

The GVF snake has a new external force: F(v) =
(a(x,y),b(x,y)) and F(v) can be obtained by minimizing
the energy functional
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E ¼
Z Z

lða2
x þ a2

y þ b2
x þ b2

yÞ þ jrfj2jF�rfj2 dxdy; ð6Þ

where f is an edge map of the input image I, and l is a reg-
ularization parameter. Using the variational method, F can
be found by solving the following Euler equations

lr2a� ða� fxÞðf 2
x þ f 2

y Þ ¼ 0

lr2b� ðb� fyÞðf 2
x þ f 2

y Þ ¼ 0
:

(
ð7Þ

In Eq. (7), $2 is the Laplacian operator, fx ¼ of
ox ; fy ¼ of

oy.
2.5. Original level set

Level set is another important category of deformable
contour methods and Malladi and Sethian [5] were the first
to propose this method for image segmentation. It origi-
nates from the theory of propagating solid/liquid interface
(front) with curvature dependent speed. The central idea is
to represent a curve as the zero level set of a higher dimen-
sional function (3D surface) with the motion of the curve
embedded in the motion of the higher dimensional surface.
The motion of the front is matched with the zero level set
of a signed distance function, and the resulting partial dif-
ferential equation for the evolution of the level set function
resembles a Hamilton–Jacobi equation. This equation is
solved using entropy-satisfying schemes borrowed from
the numerical solution of hyperbolic conservation laws,
which enable the topological changes, corner and cusp
development to be naturally obtained during the front
marching process. In the level set scheme, the contour
deforms by the function

ow
ot
¼ Cjrwj; wðx; y; t ¼ 0Þ ¼ �d: ð8Þ

In Eq. (8), C is the contour marching velocity, C ¼
gðjGr0

� I jÞðcþ jÞ, where gðjGr0
� I jÞ ¼ 1

1þjrGr0
�I j2, c > 0 is

a constant, j is the contour curvature, d is the distance
from (x,y) to the initial contour, and w is positive or neg-
ative when (x,y) is either outside or inside the initial
contour.

To speed up the front marching, computationally effi-
cient schemes like the narrow-band method and the fast
marching method are proposed in [34,6,7]. The narrow-
band method modifies the level set method so that it affects
points close to the front, i.e., the points within the narrow-
band, instead of the all the points in the image. The fast
marching method solves the general static Hamilton–
Jacobi equation, which applies in the case of a convex,
non-negative function. Starting with an initial position
for the front, the method systematically marches only one
point of the front outwards per time step instead of the
whole front as in the original level set method and the nar-
row-band method. The contour deforms as

ov
ot
¼ C~N ð9Þ
with ~N being the contour normal unit vector and C being
the non-negative velocity function. The fast marching
method [7] uses a velocity function as a decreasing function
of image gradient (ex. C ¼ e�ajrGr0

�Ij, a > 0) in order to
reach an approximate boundary result.

2.6. Geodesic active contour

Based on the above level set methods, a new level set
method called geodesic active contour method, was pro-
posed in [8] which unified the curve evolution approaches
with the classical energy minimization methods (snakes).
It was proven that the minimization of a simplified contour
energy with no second order term in Eq. (1) is equivalent to
the minimization of the contour length weighted by an edge
detection function in Riemannian space. The flow of the
contour can be described as

ov
ot
¼ gðjGr0

� I jÞðcþ jÞ~N � ðrg � ~NÞ~N ð10Þ

with gðjGr0
� I jÞ ¼ 1

1þjrGr0
�I j2, c is a constant (c > 0) for fast

convergence, and j is the curvature. The embedding sur-
face deformation process using level set implementation is

ow
ot
¼ gðjGr � I jÞðcþ jÞjrwj þ rg � rw ð11Þ

with g(Æ), j, and c being defined as above.

2.7. Area and length active contour

Siddiqi et al. [11] added a new area function weighted by
the edge detection function to the length minimization
framework of the geodesic active contour method. This
addition strengthened the force attracting the contour to
the feature of interest. With this new weighted contour
length and contour interior area minimization framework,
the deformable contour converges to the desired boundary
with a faster speed than the geodesic active contour
method. Actually the weighted length minimization flow
can be replaced by the weighted area minimization in many
cases, which offers significant computational savings. The
contour deformation in [11] can be described as
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In the level set marching scheme, the embedding surface de-
forms as
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2.8. Constrained optimization

The constrained optimization method [9] uses a velocity
function to deform the contour and an energy function to
constrain the deformation. The velocity function is defined as

ov
ot
¼ 1

1þ jrGr0
� Ij2

e�
jMðx;yÞ�I0 j

r ð1� sNð0; 1ÞÞ � T V

" #
~N :

ð14Þ

Here s ¼ Z1e�Z1 , 0 6 s 6 1, Z1 ¼ jIðx;yÞ�Mðx;yÞj
r1

, where r1 = 2r,

and r is a constant (r > 0). TV is a preset threshold for sim-
ilarity measure, M(x,y) is the average of a 3 · 3 neighbor-
hood around the contour point (x,y), N(0, 1) is a Gaussian
perturbation with variance 1 and I0 is the average contour
interior brightness. The contour energy is calculated by

EðvÞ ¼ 1
1þjrGr0

�Ij2, where ð�Þ is the average of (Æ). The proce-

dure uses a modified fast marching method with the interior
area being updated and a contour being selected from the
lower E from several nearby randomly generated contours
at each iteration. The process stops when the input number
of iterations is reached and the output is the contour with
the smallest energy during the whole deformation process.
3. Experimental setup

The objective of the experiments is to provide insight
about both the strength and weakness of the various
DCMs when used for medical image segmentation applica-
tions. Section 3.1 presents the test set and the typical chal-
lenges posed by these images. Section 3.2 presents the
evaluation scheme and Section 3.3 covers the implementa-
tion details of the parameter settings and tuning, and two
other initialization experiments.
1 Snake methods are based on the Matlab code from http://iacl.ece.j-
hu.edu/projects/gvf/ and level set methods are developed in-house with the
support from the authors [8,11].
3.1. Image test set

A small set of seven 2D images is selected to serve as the
representative test set, as shown in Fig. 1. Each test image
was one of several similar images or image slices in our
database and the experiments were comprehensive within
the database. The selection includes representation of
MRI, ultrasound, CT, and optical images. The biomedical
content includes cell, brain, knee, abdomen and heart at
the different standard cross-sectional views. The test images
are at different sizes and resolutions. The gray levels are the
same for all the test images, i.e., 0–255. Included are also
images with added noises (Gaussian, salt and pepper) cor-
rupting the overall quality of the images. Although these
types of noise are normally modality dependent or not
present due to the high quality of today’s imaging devices,
it is still interesting to show the performance of the meth-
ods in the presence of different types of noise.

The typical difficulties of image processing presented in
the test set include: blur or weak edge, strong edge near the
missing edge, profile contour in overlapping objects, com-
plex contour shape with accentuated protrusions and con-
cavities, inhomogeneous interior intensity distribution.
These are some of the typical challenges that would fail
any simple segmentation schemes.

The test set is shown in Fig. 1a–g and the image descrip-
tions are presented in Table 1. Each image contains some
bright or dark marks indicating the locations of the refer-
ence point for the initial contours used in the experiments.
The regions of interest (ROI) in the images are designated
by arrows. The ‘‘gold standard’’ segmentations shown
beside the test images were selected pixel-by-pixel by a
board-certified radiologist (the 6th author, K.L. Weiss),
which were used as the expert contours in the comparison
with the DCM results. Without the information of the cor-
responding segmentation methods, the same radiologist
subjectively ranked the computer generated results to pro-
vide a qualitative ‘‘goodness’’ assessment.
3.2. Evaluation measures

The evaluation of the DCMs is based on two quantita-
tive error measures, e1 and e2 [35], and one qualitative
‘‘goodness’’ measure (the subjective ranking by the radiol-
ogist). The quantitative measure e1 is defined as

e1 ¼ 1� jTP\EP j
jTP[EP j and the e2 is defined as e2 ¼

max
X 2 TC

min
Y 2 EC

distðX ; Y Þ. TC denotes the set of pixels belonging

to the true boundary and the set of pixels belonging to
the extracted boundary is denoted as EC. TP denotes the
set of pixels inside the TC and likewise, the set of pixels
inside the EC is denoted by EP. The dist(X,Y) function
in e2 represents the Euclidean distance between the integer
coordinates of the pixels X and Y. e1 quantifies the overlap
of the EC and the TC and it equals to zero if the two con-
tours are identical (complete overlap). e1 provides an indi-
cator of the overall goodness of the result, thus a global
evaluation measure. e2 measures the maximum Euclidean
distance between the EC and the TC. It is a local measure,
which is useful in determining if the high curvature por-
tions of the contour are extracted.
3.3. Implementation and experimental settings

The implementation of the various methods starts with
the identification of all the adjustable parameters for each
method. A computer program, written in either C or Mat-
lab, is developed for each method.1 To speed up the exper-
iments, the original (ex. 256 · 256) images were cropped to
be smaller images (ex. 71 · 71), with the object of interest in
the middle of the trimmed images. The selected methods
have all the following common simple characteristics: A

http://iacl.ece.jhu.edu/projects/gvf/
http://iacl.ece.jhu.edu/projects/gvf/
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Gaussian (7 · 7, variance 1) blurring filter is the only pre-
processing performed on the image and no post-processing
is used; the gradient magnitude images or their thresholded
results of the Gaussian blurred images are used as the edge
maps; the initial contour is formed as a circle or square
(e.g., 3 · 3 contour) centered around the initial location,
a selected image point defined by the user; no a priori infor-
mation of the object shape or texture pattern is available.
The parameters, within each group of deformable contour
methods, are very similar and are described in the next sub-
section. The following subsection discusses the parameter
setting and tuning process for each method.

3.3.1. Parameters

The snakes have five parameters in common: elasticity
(E), rigidity (R), viscosity (V), external force (X), and defor-
mation step (DS). The E and R parameters are associated
Fig. 1. (a) MRI knee image and the expert contour. (b) Light microscopy blo
brain–CSF interface and the expert contour. (d) MRI brain image to extract the
extract left ventricular inner contour (blood volume) and the expert contour. (f
with Gaussian noise (variance 3000) and the kidney expert contour.
with the internal force variables w1 and w2 in the original
snake model Eq. (1). The V and DS parameters are used in
iteratively updating contour location (i.e., deformation),
thus not explicitly included in the deformation equations.
The combination of the E and R parameters allows the
contour to maintain smoothness during the deformation
process. Decreasing E or R will result in corners and self-
intersections in the deforming contour, while increasing
them too much will shrink the contour to a line or point.
The V parameter is a weight parameter to adjust the ‘‘viscos-
ity’’ used in the updating of the contour position. Increasing
V will slow down the contour deformation process (i.e., a
large number of DS is then required to finish the process)
and make the deformation more stable. In the experiments,
the V was limited to be smaller than 20 to avoid a very large
DS number. The X parameter is a weighting variable applied
to the external force and determines the strength of the effect
od cell image and the expert contour. (c) MRI brain image to extract the
corpus callosum and the expert contour. (e) Ultrasound pig heart image to
) CT kidney image with salt and pepper noise (10%). (g) CT kidney image



Fig. 1 (continued)
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of the image features that make up the external force. For
example, k in the balloon snake Eq. (4) is a X parameter.
The DS parameter is the maximum number of contour defor-
mations that is permitted.

The balloon and topology snake have an added param-
eter, K1 inflation parameter, which is an additive constant
to the external force. The K1 parameter, k1 in Eq. (4),
allows these two snakes to march over spurious noise
points and its value is usually larger than the external force
weight. For the distance snake, the GT (gradient threshold)
parameter is a threshold that is applied to the gradient
magnitude of the input image to generate binary edge
map. Increasing GT value will keep only strong edge points
on the edge map. The binary image is used in calculating
the image features for the distance snake external force.
The GVF snake has two additional parameters, GVF N
(iteration) and GVF U (regularization). The GVF N is
an internal loop counter used to calculate the external force
field (a,b) in the image, Eq. (7). Generally it is proportional
to the image size, i.e., a large image size requires a large
GVF N. The GVF regularization parameter, l in Eq. (7),
has a correlation with the noise level of the image. The
higher the image noise the larger l should be.

The level set methods have three common parameters
and they are: iteration step (IS), inflation factor (IF), and
deformation step (DS). The IS is related to the discrete
implementation of the level set contour deformation process
and has a value less than one. Decreasing IS will result in a
slow deformation process but a more stable deformation. In
the experiments, the IS was fixed to be 0.01 for all methods.
Thus it was not considered as a parameter in the compari-
son. The IF is an additive variable, c in Eqs. (8), (10)–(13),
to the image feature used in calculating the velocity, which
plays as the ‘‘balloon force’’ in the balloon snake. Increasing
IF can speed the deformation process and march the con-
tour over the weak edges. The DS is the number of iterations
or deformation steps permitted. The level set methods are
not sensitive to the parameters IF and DS, i.e., they have
very large ranges (e.g., 100–10,000, see Table 3) for the
parameters to obtain acceptable results. If the IF increases



Table 1
Test image descriptions

Image and description Size Segmentation goal Challenges

Fig. 1a: A midline sagittal MRI
knee image

256 · 256 The femoral condyle (top portion of the knee),
i.e., to delineate the top segment of the contour
that separates the semicircular portion of the
femur from the stem

There is a weak edge segment (indicated by the
solid circle on a line labeled with ‘‘weak edge’’)
along the middle top boundary and next to a
strong spurious edge (indicated by the solid circle
on a line labeled with ‘‘strong edge’’), while the
left and right portions of the femoral condyle are
rather darker than the middle region. This
prevents the deformable contour to reach the real
boundary on the two sides before it flows out
from the top

Fig. 1b: A light microscopy blood
cell image

320 · 240 The cell(s) boundary Large range of contrast in the interior regions of
multiple overlapping target objects

Fig. 1c: A coronal MRI brain
image

256 · 256 The sulci contour, i.e., the interface between
brain substances (composed of gray and white
matters) and CSF

Complex contour shape with deep concavities
and sharp protrusions (three examples are
indicated by arrows labeled with ‘‘sharp’’), and
inhomogeneous interior

Fig. 1d: A midline sagittal MRI
brain image

256 · 256 The corpus callosum The very blur contour segments at the lower left
corner and middle bottom region, as indicated by
the arrows labeled with ‘‘blur’’

Fig. 1e: An echocardiographic
image of a pig heart

640 · 480 The pig heart Complex shape, gaps (missing edges along the
contour due to signal drop out), and non-
homogeneous interior, which are typical for
cross-sectional left ventricular (LV) echo images

Fig. 1f: An axial CT image of the
abdomen including cross-
sections of stomach, kidney,
and vertebra

512 · 512 The kidney Salt and pepper noise (10%)

Fig. 1g: Same as Fig. 1f. 512 · 512 The kidney Gaussian noise of variance 3000

2 In practice, it is generally a range of values, not a single value, for each
parameter that derive the results close to the expert contour, thus any
parameter values from the range can be considered the ‘‘best’’, or near
best. The middle value in the range was chosen in our experiments for
consistency in determining the range for each parameter.
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too much, the deformable contour may not stable. There-
fore, in the experiments, the IF was selected to avoid a very
fast or a very slow deformation process.

The AF (area–length factor), used in the area and length
active contour, is a variable used to weight the area and
length functionals, a in Eq. (13). In practice, Dr. Siddiqi
recommended that the area component should be scaled
comparably to the length component and therefore a con-
stant scaling factor was incorporated into Eq. (13) before
the area component. Additionally, an inflation factor (IF)
was added to increase the deformation speed. The con-
strained optimization method uses a SM (interior smooth-
ness) parameter, r in Eq. (14), with a value that is related to
the smoothness of the interior of the desired contour
boundary. A larger variance of the desired boundary inte-
rior requires a larger SM parameter value.

Tables 2 and 3 outline the effects of the parameters for
the snake and level set methods. The tables also list the
value ranges of the parameters used to process the test
set images. The process to determine the parameter value
ranges is described in Section 3.3.2, Step 2. For each
parameter, its value range has some variations for different
images. Therefore, for each parameter, the union of the
ranges for different testing images is used as an approxima-
tion of the value range in the tables. As indicated in Section
3.1, each test image serves as a representative sample for a
small group of similar images in our database. After
repeating the parameter tuning process to other images in
each group, comparable results are obtained, indicating
the robustness of our parameter tuning scheme.

3.3.2. Parameter setting and tuning
Once the parameters were identified and encoded, the

next question is how to determine and adjust the parameter
values to obtain good results with small errors compared
with the expert contours. In practice, for a new set of
images with similar characteristics, some preliminary train-
ing and testing are normally required. In the experiments,
we used a coarse to fine scheme on the image test set to
achieve the ‘‘best’’2 parameter set based on both the qual-
itative and quantitative error measures. The following steps
outline the process used to determine parameter settings
and tuning of the deformable contour methods under con-
sideration. Even though the deformation step (DS) is con-
sidered a parameter, it could not be varied independently
and it was adjusted accordingly with the variations of the



Table 3
Level set method parameter effects and value ranges

Parameters fl › Level set Geodesic Area/length Constrained opt.

IF, Inflation Factor Slower deformation Faster deformation
cross weak edges

2–20 4–20 4–20 N/A

DS, Deformation Steps Shorter deformation Longer deformation 100–15,000 500–20,000 600–20,000 600–7000
AF, Area Length Factor Smaller length factor Larger length factor N/A N/A 1 N/A
SM, Interior Smoothness For smaller interior variance For larger interior variance N/A N/A N/A 4–20

Table 2
Snake method parameter effects and value ranges

Parameters fl › Balloon/topology Distance GVF

E, Elasticity Contour develops corners Contour shrinks to a line or point 0–0.5 0–2.77 0–11.59
R, Rigidity Develop corners Contour shrinks to a line or point 0–1.88 0–13.93 0–24
V, Viscosity Faster deformation, less smooth

contour
Slower deformation, smoother
contour

0–20.0 0.12–10.0 0.3–15.0

X, Image Feature Strength Reduce image edge effects,
contour cross over weak edges

Increase image edge effects, stops
contour at edges

1.2–25.0 0.1–8.56 1.02–16

K1, Inflation Force Slow deformation Speed deformation 0.08–0.45 N/A N/A
DS, Deformation Steps Shorter deformation Longer deformation 50–12,000 30–900 10–400
GVF N, Iteration Number For low image noise For large image noise N/A N/A 80–200
GVF U, Regularization Factor For low image noise For large image noise N/A N/A 0.02–0.21
GT, Image Gradient Threshold Keep weak edges Keep strong edges N/A 0.02–0.18 N/A
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other parameters during the parameter setting and tuning
stages.

(1) Initial parameter setting: The initial parameter set-
tings were obtained by manually selecting the param-
eters, based on experience, and iterating the process
until a visually acceptable result was obtained.

(2) Parameter range determination: Once the initial val-
ues of the parameters were identified, the following
procedures were used to determine their variation
ranges.
3 Th
multi-s
‘‘jump
higher
limits.
to the

4 In
noticea
contou
consid
results
(I) Except for the selected adjustable parameter
and the deformation step parameter, fix all
other parameters to their initial values or the
middle value of their acceptable ranges;

(II) Adjust the selected parameter value and rerun
the program. For example, the inflation force
parameters of the level set methods were adjusted
to be 0.01, 0.1, 0.5, 1, 2, 5, 10, 100, 200, etc.3

(III) Evaluate the resultant contour by visually com-
paring with the expert contour and rejecting the
adjusted value when a large variation4 occurs
between the resultant contour and the expert
contour.
e steps to determine the value range of a parameter were used in a
cale fashion, i.e., start with a coarse resolution consisting of large
’’ between step values to determine the approximate range, then a
resolution with smaller step values was used to locate the range

In fact, the process to determine the parameter range is not sensitive
step values.
practice, manual visual comparison is good enough to detect
ble differences between the extracted contours with the expert
r, i.e., the visual difference can be easily identified by a people is
ered as a ‘‘large variation’’. In these cases, the manual comparison
are in agreement with the two quantitative error measurements.

5 As
multi-s
10 poi
the bes
one pa
(IV) Determine the suitable range for the parameter
in which the resultant contour is visually
acceptable.

(V) Repeat steps (I)–(IV) for the other parameters
with the assumption that the parameters are in-
dependent, thus the order in choosing parame-
ters does not matter. The resultant ranges of the
parameters are obtained by doubling the accept-
able range to increase the search range for the
optimal parameter. Intuitively, if the parameters
were dependent on each other then the resultant
contours would not converge or provide accurate
results. However, in practice this is not the case
and the treatment of the parameters as indepen-
dent provides accurate results.
(3) Parameter fine tuning: The parameters are fine-tuned
based on the acceptable ranges determined above.
(I) Assign all parameters to the middle value of

their testing range.
(II) Select one parameter to be free and choose uni-

formly incremented values5 in its range to
adjust the free parameter.

(III) Rerun the programs with adjusted parameter.
(IV) Evaluate resultant contour by computing the

quantitative error measures described in Section
3.2.
mentioned above, the parameter range was determined using a
cale approach. To fine-tune the results, a uniform distributed set of
nts is placed across the resultant parameter range. The point with
t result is chosen as the optimal value. In practice, it was found that
ss of fine-tuning for each parameter was sufficient.
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(V) Derive an error curve or chart from the
quantitative measures (e.g., Figs. 11 and 12 in
Section 4.9).

(VI) The value for the best resultant contour is
determined as the optimal value for this
parameter.

(VII) Repeat the process for all other parameters.

In practice, the above fine-tuning process can be
repeated for finer resolution if needed. For issues of loca-
tion sensitivity, the above process was repeated at several
locations (as shown in Fig. 1) inside the object of interest.
The initial contour locations were generally selected to be
uniformly distributed within the object, and to cover differ-
ent difficulties. The parameter ranges for different initial
locations were based on the coarse first initial location
parameter results. From the coarse parameter ranges, the
parameter values, for each different initial starting point,
were fine-tuned as described above. For example, for the
knee with a relatively simple shape, there were four initial
locations (Fig. 1a), which are in the smooth region (middle
location), rather dark regions (left and right locations) and
blurry region (top location). For the brain with a quite
complex shape, we applied seven initial locations uniformly
distributed in the shape (Fig. 1c). The parameter tuning is
based on the test images in Fig. 1, which were selected from
several similar image slices in our database. The derived
parameters in Table 2 and 3 also provide good results on
other similar database images.

3.3.3. Different initializations

To broaden the scope of the DCM test, several other
experiments were conducted. These excursions from the
base experiment, the initial contour being formed as a circle
around the user selected location, included two variations
of initial contour locations and sizes, as illustrated in Sec-
tion 4.8. In the experiments, the initial contours were
approximated as polygons crossing the desired object
boundary and surrounding the object, respectively. The
contours either grew or shrank to extract the object bound-
ary. The parameter setting and tuning process, for these
experiments, used the same methods described in Section
3.3.2. The objective of these experiments was to test the
sensitivity of the DCMs on different initial conditions
and results are briefly stated in Section 4.8.

4. Experimental results

Due to the space limitations, only a partial set of rep-
resentative images (see Fig. 1) and their results are pre-
sented. The parameter ranges described in Tables 2 and
3 are derived from the selected set of image results, which
are presented in this section. As indicated in Section 3.3.1,
the derived parameters in Tables 2 and 3 also provide
comparable results on other database images. The results
of each test image are first presented with the correspond-
ing parameters listed in the subsequent tables, then fol-
lowed by an overall comparative result table, Table 10,
using the different evaluation measures. For a clear visual
comparison of these results to the expert manual segmen-
tations, the expert contours in Fig. 1 are displayed again
in the first image of each figure (Figs. 2–8a). A discussion
summarizing the findings is given at the end of this
section.

4.1. MRI knee

The goal of the MRI knee experiment was to determine
which method could segment an object that has diverse
contrast in the region within the target boundary and a
weak edge. In this test image, near both the left and right
top corners of the region are darker in intensity and weak
edge is located on the top center of the target contour. The
results are displayed in Fig. 2b–h and the parameters to
derive these results are listed in Table 4. The balloon snake
has the same result as the topology snake, shown in
Fig. 2b, because there is no contour topology change in
the deformation process. All the results, except the balloon
snake, show a crossing over of the blur segment in the
upper middle region of the femoral condyle and most of
the contours could not reach into the upper left and right
corner. Four initial points were used for the test, as shown
in Fig. 1a. The balloon/topology snake, original level set,
geodesic active contour, area and length active contour,
and constrained optimization method are generally not
sensitive to the initial starting locations if deforming in a
homogeneous region with a clear boundary. However, as
describe in Section 3.1, the left and right portions of the
femoral condyle are rather darker than the middle region,
thus these methods had best results with the two initial
locations both at the middle section. The best results for
the distance snake and the GVF snake occurred with the
upper middle initial location and are shown in Fig. 2c
and d, respectively. Both of them required a bigger initial
contour (e.g., double and triple the initial contour radius)
than others in order to catch the attraction forces from
the edge points in all directions. Otherwise, the whole con-
tour will be pulled towards only a part of the boundary.
For the two non-central initial locations, the distance snake
and GVF snake had very poor results even when using a
larger initial contour size (e.g., double, triple, four and five
times of the initial contour radius) due to the above reason.
From the visual observation of the radiologist, the balloon
snake, distance snake and GVF snake methods were deter-
mined to give the best qualitative results, i.e., most similar
to the expert in Fig. 2a.

4.2. Blood cells

The blood cell segmentation exemplifies the case of over-
lapping segments and non-homogenous regions. Three ini-
tial contour starting locations, upper, middle, and lower,
see Fig. 1b, were tested. In Fig. 3b, the balloon/topology



Fig. 2. (a) Knee expert contour. (b) Balloon/topology snake. (c) Distance snake. (d) GVF snake. (e) Original level set. (f) Geodesic active contour. (g) Area
and length active contour. (h) Constrained optimization.

Fig. 3. (a) Cell expert contour. (b) Balloon/topology snake. (c) Distance snake. (d) GVF snake. (e) Original level set. (f) Geodesic active contour. (g) Area
and length active contour. (h) Constrained optimization.
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snake result is shown using middle initial location. Due to
the overlapping on both the top and bottom regions of the
cell, these two methods as well as the distance and GVF
snakes were very sensitive to the initial contour location
and the result of both upper and lower initial locations
caused the contour to flow out of the expected boundary
or shrink to be a line segment sticking to edges. The dis-
tance snake and GVF snake results, when middle location



Fig. 4. (a) Sulci expert contour. (b) Topology snake. (c) Original level set. (d) Geodesic active contour. (e) Area and length active contour. (f) Constrained
optimization.

Fig. 5. (a) Corpus callosum expert contour. (b) Geodesic active contour. (c) Area and length active contour. (d) Constrained optimization.
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was used, were displayed in Fig. 3c and d. All four of the
level set group of methods yielded comparable results as
shown in Fig. 3e–h. They are not sensitive to the initial
starting location and the other parameters (IF or AF).
However, with a fixed IF, AF, or SM value, the contour
will flow out from the overlapped regions if we allow a
large DS number in the deformation, which is resulted
from the multiple local energy minima due to the missing
edges in the overlapping regions. The distance snake and
GVF snake were determined to obtain the best qualitative
result and the parameters of different methods to derive the
results in Fig. 3 are listed in Table 5.
4.3. MRI brain (sulci contour)

The coronal MRI brain image presents an example of
complex contour shape and tests the deformable contour
methods’ ability to handle this type of difficulty. The goal
of the segmentation was to extract the brain–CSF inter-
face contour (sulci) and seven initial locations were tried,
as shown in Fig. 1c. It can also be seen that the sulci con-
tour is not topologically equivalent to the shape of the ini-
tial contour. Thus the balloon snake failed to provide any
meaningful result due to incapability for topology change.
So did the distance and GVF snakes as they produced



Fig. 6. (a) Pig heart expert contour. (b) Balloon/topology snake. (c) Distance snake. (d) GVF snake. (e) Original level set. (f) Geodesic active contour. (g)
Area and length active contour. (h) Constrained optimization.

Fig. 7. (a) Kidney expert contour. (b) Balloon snake. (c) Topology snake. (d) Original level set. (e) Geodesic active contour. (f) Area and length active
contour. (g) Constrained optimization.
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Fig. 8. (a) Kidney expert contour. (b) Constrained optimization.

Table 4
Parameter settings for Fig. 2 results

Balloon/topology GVF Distance Level set Geodesic Area/length Constrained opt.

E 0.44 5.07 0.378 – – – –
R 1.128 0 2.157 – – – –
V 6.056 14.492 2 – – – –
X 24.049 11.638 0.105 – – – –
K1 0.28 – – – – – –
GVF N – 0.025 – – – – –
GVF U – 120 – – – – –
GT – – 0.025 – – – –
IF – – – 8 4 3 –
AF – – – – – 1 –
SM – – – – – – 20
DS 600 30 900 140 390 650 600

Table 5
Parameter settings for Fig. 3 results

Balloon/topology GVF Distance Level set Geodesic Area/length Constrained opt.

E 0.182 3.2 0.62 – – – –
R 1.05 24 4.435 – – – –
V 3.042 7.568 2.096 – – – –
X 5 6.924 2.834 – – – –
K1 0.2 – – – – – –
GVF N – 0.057 – – – – –
GVF U – 80 – – – –
GT – – 0.049 – – – –
IF – – – 10 10 6 –
AF – – – – – 1 –
SM – – – – – – 20
DS 430 60 60 1500 2500 4000 1100
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small or incomplete contours. With simple initial contour,
both the distance and GVF snakes cannot catch the
attraction forces from all the edge points in the external
force field. The topology snake, being insensitive to the
initial starting location, did a good job of extracting
the gray–white interface instead of the sulci contour and
the result is displayed in Fig. 4b. If further deformation
is allowed, the contour will flow out from some gaps
(e.g., left and right bottom regions of the sulci contour)
before it reaches the correct sulci contour in other loca-
tions. Once again, the group of level set methods had sim-
ilar results, which can be seen in Fig. 4c–f. With these
methods the starting location caused little variance in
the final contour. The best result for the original level
set, geodesic and area and length active contour methods
show that these methods cannot obtain small sharp pro-
trusions (see Fig. 1c) in the contour segments at the lower
left and lower right sides of the brain. Experiments also
showed that further DS or iterations resulted in the con-
tour crossing over the weak edge segments. The con-
strained optimization method provided the best
qualitative results for this difficult problem. The parame-
ters of different methods to derive the results in Fig. 4
are listed in Table 6.



Table 6
Parameter settings for Fig. 4 results

Topology Level
set

Geodesic Area/length Constrained
opt.

E 0.01 – – – –
R 0.05 – – – –
V 0.8 – – – –
X 6 – – – –
K1 0.15 – – – –
GVF N – – – – –
GVF U – – – –
GT – – – – –
IF – 10 10 10 –
AF – – – 1 –
SM – – – – 4
DS 1000 9000 11,800 12,000 7000

Table 7
Parameter settings for Fig. 5 results

Geodesic Area/length Constrained opt.

IF 13 10 –
AF – 1 –
SM – – 6
DS 500 600 600

6 According the quantitative error measurements in Table 10, the best
result was produced by the constrained optimization method, with an
irregular contour. However, because the regular shape produced by the
GVF snake looks closer to the expert contour, the radiologist ranked it as
the best by his visual observation, which is actually the second best with
the quantitative error measurements.
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4.4. MRI brain (corpus callosum contour)

The segmentation of the corpus callosum in the midline
sagittal MRI brain image provides a difficult challenge
because it has large area of blur boundary segments, which
results in big gaps in the external force field. Three initial
starting locations of Fig. 1d were used for test. All four
of the snake methods, the balloon/topology, GVF, and dis-
tance snake, failed to segment the corpus callosum prop-
erly due to the insufficient attraction forces from the gaps
in the external force field. The resultant contour overflows
the weak boundaries into the brain tissue, even if different
initial locations and initial contour sizes could not change
the outcome. In the level set method group, the original
level set method, like the snake methods, yielded a resultant
contour that marched over the weak boundaries. The geo-
desic and the area and length active contour methods could
extract the appropriate boundary when the middle point
was set as the starting location, and the results are shown
in Fig. 5b and c, respectively. However, due to the very blur
contour segments at the lower left corner and middle bot-
tom region of the corpus callosum, only a partial extraction
occurred when either left or right starting location was used
for these methods. If further deformation is allowed, the
contour will flow out from these gaps before it extracts
the whole corpus callosum. The constrained optimization
method could yield acceptable results for all three locations
and a result is shown in Fig. 5d. Note that only three meth-
ods were able to obtain reasonable resultant contours with
the constrained optimization method providing the best
qualitative result. The corresponding parameters are listed
in Table 7.

4.5. Ultrasound pig heart

The pig heart is an ultrasound image and the segmenta-
tion problems result from the complex shape with inhomo-
geneous interior and gaps. Three initial contour locations
(Fig. 1e) were used. The sensitivity to the initial location
affected all the methods. Due to the proximity of the gaps
the results from the bottom initial location had the worst
performance. The extracted contours of all the methods
were able to represent most of the pig heart. Again, the
GVF snake requires a much bigger initial contour (e.g., five
times of the initial contour radius) than others in order to
catch the attraction forces from edge points in all
directions. The best qualitative result was the GVF snake6

and the parameters of different methods are listed in
Table 8.

4.6. CT kidney salt and pepper noise

This test uses a CT cross-section of the kidney for the
segmentation. Salt and pepper noise (10%) was added to
the image to test how the deformable contour methods
will handle noisy image. The topology snake was able to
completely extract the kidney and was insensitive to the
starting location. The result is displayed in Fig. 7c and
it is close to the balloon snake result in Fig. 7b. The dif-
ference is there is a self-intersection in the balloon snake
result, which is due to the approach incapability of con-
tour topology change. The original level set method, geo-
desic active contour, and area and length active contour
extract the majority of the kidney before marching out
and are sensitive to the initial locations. The best results
are displayed in Fig. 7d–f with different initial locations
in Fig. 1f (e.g., Fig. 7d–f were using the right, top, and left
initial locations, respectively). Fig. 7g displays the result of
the constrained optimization method. This method is able
to extract the kidney and is insensitive to the starting loca-
tion. The topology snake and constrained optimization
methods were determined to provide the best qualitative
results. Note for the kidney image without noise, almost
all the methods studied were able to extract the kidney
except for distance snake and GVF snake. However, with
large initial contours (i.e., the initial contour is big enough
in the external force field to ‘‘feel’’ the attraction forces
from remote edge points), these two methods could also
extract the kidney with no noise present. The parameters
of different methods to derive the results in Fig. 7 are
listed in Table 9.



Table 8
Parameter settings for Fig. 6 results

Balloon/topology GVF Distance Level set Geodesic Area/length Constrained opt.

E 0.107 3.477 0.554 – – – –
R 0.14 12 1.385 – – – –
V 4.024 1.44 4.564 – – – –
X 3.4 3.114 2.96 – – – –
K1 0.224 – – – – – –
GVF N – 0.196 – – – – –
GVF U – 200 – – – – –
GT – – 0.156 – – – –
IF – – – 16 18 18 –
AF – – – – – 1 –
SM – – – – – – 10
DS 1080 55 360 20,000 20,000 20,000 7000

Table 9
Parameter settings for Fig. 7 results

Balloon/topology Level
set

Geodesic Area/length Constrained
opt.

E 0.5 – – – –
R 0 – – – –
V 20 – – – –
X 6 – – – –
K1 0.31 – – – –
GVF N – – – – –
GVF U – – – –
GT – – – – –
IF – 6 13 20 –
AF – – – 1 –
SM – – – – 4
DS 12,000 2700 1350 6000 2400
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4.7. CT kidney Gaussian noise

The kidney CT cross-section with additive Gaussian
noise (variance 3000) had the worst overall results. Except
for the constrained optimization, all the other methods
could only extract partial sections of the kidney. The con-
strained optimization method was able to obtain the kid-
ney boundary and starting location had little effect on the
resultant contour (Fig. 8b). The parameters for the result
in Fig. 8b are: SM is 4 and DS is 2400. Even though most
medical images today have little Gaussian or salt and pep-
per noise, the addition of these noises to the kidney image
is used to show the robustness and extended applicability
of the DCMs in the study.
4.8. Different initializations

In general, initial contours for DCMs in medical image
segmentations can be constructed by (a) placing a small
contour within the object as the experiments in the previ-
ous sections, (b) drawing an approximate (polygonal)
boundary across the desired object boundary, or (c) placing
a large shape (polygon or circle) outside the desired bound-
ary. The main experiments focused on the first condition,
(a), because it requires the least user interaction for auto-
mated image segmentation. As described in Section 3.3.3,
two other initializations, (b) and (c), were used to show
the sensitivity of the DCMs. Due to the space limitation,
the blood cell image was selected as an example for illus-
trating these different initial conditions. The constrained
optimization method was also not utilized for these tests
because it requires the initial contour being located within
the object.

Fig. 9a and b shows the expert contour and the initial
contour crossing the cell boundary. Fig. 9c–h shows the
results obtained from the DCMs. For the initial contour
segments within the object, the distance, and GVF snakes
could correctly extract some segments of the cell boundary
if there is no object overlapping at these segments. For the
initial contour segments outside of the cell, they were
attracted to edges of other cells if the initial contour seg-
ments were closer to the edges of the adjacent cells than
those of the cell of interest. If the surrounding area of the
cell is clean with no other objects, it can be predicted the
distance and GVF snakes will be attracted to the desired
boundary. The balloon snake and the level set methods
failed to extract the object correctly. Actually in this initial-
ization, they can not obtain the desired boundary even if
the surrounding area of the cell of interest is clean because
the balloon force will either grow or shrink the whole con-
tour instead of growing the contour segments inside the
object and shrinking the contour segments outside the
object. All the methods had difficulties in handling the
overlapping parts at the top and bottom of the cell.

Fig. 10a and b shows the expert contour and the initial
contour surrounding the cell of interest. Fig. 10c–h shows
the results obtained from the DCMs. The distance and
GVF snakes extracted almost all the boundary except the
top right contour segment that is being attracted to another
cell, which is because the top right initial contour segment
is closer to the edges of the adjacent cell than those of the
cell of interest. The balloon snake and level set methods all
had a negative inflation force value in order to shrink the
initial contour to the cell boundary. It can be seen that
the contour deflated into the cell from the overlapping
regions of the top and bottom of the cell before the left
contour segment was attracted to the correct edge.



Fig. 9. (a) Cell expert contour. (b) Initial contour crossing object boundary. (c) Balloon/topology snake. (d) Distance snake. (e) GVF snake. (f) Original
level set. (g) Geodesic active contour. (h) Area and length active contour.

Fig. 10. (a) Cell expert contour. (b) Initial contour surrounding object. (c) Balloon/topology snake. (d) Distance snake. (e) GVF snake. (f) Original level
set. (g) Geodesic active contour. (h) Area and length active contour.

158 L. He et al. / Image and Vision Computing 26 (2008) 141–163
4.9. Error measure results

Table 10 displays the results of both quantitative and
qualitative evaluation of the experiments of the test set of
images based on the experiments from Sections 4.1–4.7.
As indicated in Section 3.1, the qualitative evaluations
are implemented by the radiologist. The quantitative eval-
uations are done based on the two error measures defined



Table 10
Error measures: the bolded values represent the best quantitative result and the values marked by asterisk represent the best qualitative result

Measure Medical image Methods

Balloon/topology Distance GVF Level set Geodesic Area/length Constrained opt.

e1 Knee 0.20* 0.21* 0.17* 0.34 0.28 0.26 0.30
Cell 0.13 0.10* 0.09* 0.19 0.21 0.20 0.18
Brain (sulci) 0.51 0.97 0.91 0.23 0.26 0.35 0.19*

Brain (corpus callosum) 0.71 0.72 0.85 0.69 0.34 0.4 0.18*

Heart 0.16 0.17 0.12 0.14 0.13 0.13 0.07*

Kidney (SP) 0.17* 0.75 0.89 0.18 0.42 0.26 0.12*

Kidney (G) 0.57 0.80 0.87 0.57 0.54 0.76 0.12*

e2 Knee 5.0* 5.0* 3.0* 7.0 6.0 5.8 9.0
Cell 6.1 3.0* 3.6* 5.8 6.7 6.0 7.1
Brain (sulci) 12.8 76.7 72.0 10.8 12.6 14.2 7.1*

Brain (corpus callosum) 42.2 59.3 57.1 57.3 7.6 9.8 2.2*

Heart 11.7 16.3 8.6 14.9 14.9 14.8 6.4*

Kidney (SP) 6.0* 48.4 51.0 7.8 12.2 7.1 3.6*

Kidney (G) 35.2 47.0 48.3 29.4 26.7 42.4 4.0*
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in Section 3.2 and the expert contours in Fig. 1. In Sections
4.1–4.7, the balloon snake and the topology snake have
obtained the same results of the test images except the
brain sulci segmentation, which involves contour topology
change. Therefore, their results are merged together in
Table 10 and the brain sulci contour is generated by the
topology snake. The boldfaced values in the table represent
the best result for the given test. The values marked by
asterisk represent the best qualitative result. Note that in
most of the cases, the qualitative and quantitative results
are the same. Due to the inclusion of both edge and region
features in deformation, the constrained optimization
approach obtains better results than others in most cases.

To test the comparison values’ invariability to the inter-
individual and intra-individual variations of the manual
segmentations, the radiologist drew two more sets of expert
contours and three non-experts drew three sets of the non-
expert contours based on the atlas [40–44] and guidance
from the radiologist. Figs. 11 and 12 illustrate two exam-
ples of the segmentation error of e1 and e2 on the blood cell
image (Fig. 1b) and the pig heart image (Fig. 1e), which are
obtained by comparing the DCM results with the six sets of
expert and non-expert contours. Ideally, if the boundaries
drawn by different people (or by one people with multiple
times) are identical, the error bars should have the same
height. Therefore, a small variation of an error indicates
a good invariability of the result to the inter- and intra-
individual variations. As an example in Fig. 11, the mean
and the standard deviation of e1 of the GVF result are
0.102 and 0.009 for the three expert contours, 0.098 and
0.005 for the three non-expert contours; the mean and
the standard deviation of e2 are 2.997 and 0.167 for the
three expert contours, 3.202 and 0.35 for the three non-
expert contours. For both expert and non-expert model
contours, the standard deviations are generally small com-
pared with the mean values for the two measurements, thus
this result is about invariable to human segmentation vari-
ations. The bars in Figs. 11 and 12 all have small variations
and the method obtaining the best result in Table 10 in
most cases also has the best results when compared with
other models. From other testing images, we can also
observe the similar results, which show that the quantita-
tive comparison values in Table 10 are about invariable
to the inter-individual and intra-individual variations.

4.10. Summary

As the emphasis was on obtaining correctly segmented
contours and not on how efficiently implementing the algo-
rithms, the computational complexity of the algorithms
was not broached in this comparative study. Besides the
topology changing operations in the topology snake and
the external force fields construction in the distance and
GVF snakes, the snake computation complexity in the
coarse detection is O(mP) where P is the number of snaxels
(snake pixels) in each iteration and m is the iteration num-
ber before the snake reaches equilibrium. Level set methods
implemented by the original level set formulation generally
have the computational complexity O(N3) for 2D image
segmentation, with N being the number of points in each
coordinate direction. When narrow-band scheme is applied
instead of level set formulation, the computational com-
plexity will be reduced to O(wN2), where w is width of
the narrow-band around the deforming contour. When
the contour deformation velocity F is non-negative, fast
marching scheme can be applied to deform the contour.
The computational expense reduces from O(N3) of the level
set formulation to O(N2 logN) per time step in fast march-
ing approach. In the cases of objects with simple shape, like
the cell and knee, narrow-band method and fast marching
method are obviously faster than the original level set
method. On the other hand, the narrow-band method
could be very slow in the cases of complex objects because
the overhead to maintain a valid band is very large.

In summary, the snake methods have an overall
smoother extracted contour than the level set methods.
The smoothness is a result of the internal force parameters
used in the snake definition and is why snakes have a more



Fig. 11. (a) Blood cell error curves of e1. (b) Blood cell error curves of e2.

7 This is because e2 measures the maximum Euclidean distance between
the extracted contour and the target boundary, for a complex boundary
with a large curvature variation, the smoother the contour (i.e., the smaller
the curvature variation), the larger the e2.
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difficult time extracting protrusions in complex images.
After the GVF snake, a generalized GVF (GGVF) [39]
snake was proposed to handle the sharp protrusions with
some improvements. In our testing images, it had similar
results with the GVF snake. However, it still cannot handle
the complex case due to the topology change limitation.
Additionally, the GGVF snake performs like the distance
and GVF snake in the case of weak edges, especially when
a weak boundary is close to a strong spurious one, the
snake readily steps through the weak edge and stops at
the strong one, such as the MRI knee example in this study.
On the other hand, the internal force enables snakes per-
form better than level set methods in gaps, such as blood
cells. Furthermore, this smoothness is also reflected in the
local error measure e2, which on average are larger than
level set methods in images that have complex boundaries.7



Fig. 12. (a) Pig heart error curves of e1. (b) Pig heart error curves of e2.
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The balloon-type methods (balloon snake and level set
methods) are more insensitive to initial contour locations
than the methods do not have pressure forces like the dis-
tance snake and GVF snake. This is due to the shape and
edge strength of the desired boundary. The distance snake
and GVF snake usually require the initial contour to be
placed in the center of object of interest, in order to avoid
the whole contour being attracted by a part of boundary.
As indicated in Sections 1 and 2, the object shape (edge
map) generates the image external force field, which
attracts the deformable contour to the desired boundary,
thus the object shape plays an important role in the deter-
mination of the final result. For example, the cell image
and knee image have shapes that are more ‘‘circular’’.
These types of images, for the distance snake and GVF
snake, are less sensitive to initial contour location and have
a more uniform attraction to the boundary edge if the ini-
tial contour is large enough. In contrast, the corpus callo-
sum in brain image has a narrow elongated shape and
thus the position of the initial location causes drastic differ-



Table 11
Deformable contour method selection

Multiple
contours

Gap or blurry
edges

Complex shapes with a
large curvature variation

Circular
shapea

Elongated
shape

Noise
interior

Initial contour outside
or cross boundary

Balloon
p p p p

Distance
p p p p

GVF
p p p p

Topology
p p p p p

Level set
p p p

Geodesic
p p p p

Area and length
p p p p

Const. opt.
p p p p

a As indicated in Sections 4.1 and 4.5, a big distance or GVF snake with center initialization in the object is desired to obtain a good result in this
condition.
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ences on the extracted contours. GGVF is a good improve-
ment of distance and GVF snakes on the robustness to the
object shape variations. For the methods with ‘‘balloon
force’’ to inflate or deflate the deformable contour, in ideal
case (with only object and background) their results on the
same image should be invariable to different initial contour
locations and object shapes. However, in practice the med-
ical images are rather complex and noisy. Therefore, the
initial contour locations matter and the result will be good
if the initial contour has a good location, like far away
from gaps and close to clear edges.

The level set methods have the ability for handling
topological change. This ability makes the level set meth-
ods preferable for segmenting complex shapes. Also, level
set methods have fewer parameters than their snake meth-
ods counterparts and are more insensitive to the parame-
ter variations making parameter tuning easier. However,
in practice, the stopping criteria of the level set methods
are mostly based on the number of iterations. This means
that the number of iterations required for extracting the
desired contour must be approximately known or the
final contour will be either smaller or march over the
expected boundary. For both snakes and level set meth-
ods, the segmentation results are insensitive to the param-
eter variations if their values are within the acceptable
ranges, as described in Section 3.3.2 and shown in Tables
2 and 3. As a brief summary for above observations,
Table 11 provides a general reference on DCM selection
under different conditions. Note that practical problems
are always complicated as combinations of several chal-
lenges, thus DCM selection is usually a tradeoff among
different candidates.
5. Conclusions

This paper presents a study of eight deformable contour
methods applied to segmentation of medical imagery.
These test images provide a small sample of some typical
cross-sectional views of anatomic parts as well as the four
different imaging technologies widely used in the biomedi-
cal image processing domain: CT, MRI, ultrasound, and
optical. Due to the various challenges posed by the medical
images, in terms of extracting the actual boundary of the
target object within a given image, the various deformable
contour methods studied in this paper showed their versa-
tility and shortcomings. It is concluded that even though
there are still many challenges to be faced, it is with a better
understanding of both the problems and the features pro-
vided by the various methods that a successful solution
could be devised. One important point to be noted here
is these methods are not mutually exclusive. Thus in prac-
tice, a new deformable contour method can be proposed to
incorporate features from other methods in order to handle
specific applications, e.g., the user could has a balloon
snake that uses distance forces or GVF. In addition, the
more information from image or object integrated in the
evolution framework, the better segmentation results can
be obtained. For example, the deformable contour method
(e.g., the constrained optimization approach) considering
both edge and region features can obtain better results than
those based on only edge information. We hope this paper
provides a better insight to both the biomedical image seg-
mentation problem and the powerful features of the
DCMs.
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