PART 2

Historical Mountain Geomorphology

Cascade Mountain, Banff, Alberta, Canada
Photo: P.N. Owens
Cenozoic evolution of global mountain systems

Lewis A. Owen

1 Introduction

Mountain systems are among the most prominent geomorphic features on the Earth. Tectonically, they are major belts of pervasive deformation that include thick sequences of shallow-water sandstones, limestones and shales deposited on continental crust, and oceanic deposits characterized by deep-water turbidites and pelagic sediments, commonly with volcaniclastic sediments and volcanic rocks. Typically, mountain systems have been deformed and metamorphosed to varying degrees and intruded by plutonic rocks, chiefly of granitic affinity (Moores and Twiss, 1995).

The geologic evolution of these orogenic belts is complex and may span hundreds of millions of years. During the latter part of the twentieth century the application of plate tectonic theories to the study of orogenic belts revolutionized the understanding of the dynamics and evolution of these systems. Furthermore, the rapid development of geophysical and geochemical techniques has aided the measurement, monitoring and modelling of the evolution of mountain systems on local, regional and global scales. Contemporary research on the evolution of mountain systems involves most branches of geology, particularly geodesy, geophysics, geochemistry, structural geology, sedimentology, stratigraphy, geomorphology and palaeoclimatology (Zeitler et al., 2001; Bishop et al., 2002).

A casual comparison of topographic and tectonic maps of the world clearly shows that the major high mountain systems occur along or are parallel to lithospheric plate boundaries (Figure 2.1). The majority of these mountain systems began to form and largely evolved during the Cenozoic (~65 Ma to present). These are commonly referred to as 'young' mountain systems and 'active' if they are presently deforming. Of particular note are the Alpine–Himalayan–Tibetan and the Circum-Pacific orogenic systems, and the ocean ridges. Closer inspection reveals regionally extensive and significant mountain belts of lesser relief. These 'ancient' mountain systems generally have little or no relationship to the present lithospheric plate boundaries and may have begun to have formed many hundreds of millions of years ago. Despite their age and distance from plate margins these mountain systems may still experience deformation, albeit not so dramatic as young active mountain belts. Often their major pervasive geologic structures are zones of discontinuity along which earthquakes may occur. The Appalachian–Caledonide system is one of the best examples. This mountain system stretched for some 6000 km and now includes the Caledonides of east Greenland, Svalbard, Ireland, Britain and Scandinavia, the Appalachians of the USA and Canada, the Innuitian Mountains of Arctic Canada and Greenland, the Ouachita Mountains of south-central USA, the Cordillera Oriental in Mexico, the Venezuelan Andes and the West African fold belt. The evolution of this mountain system began in the late Precambrian (~570 Ma), and the deformation and mountain building occurred during three major orogenies, during the early, middle and late Palaeozoic (between ~570 Ma and ~250 Ma). The mountain system
was subsequently broken up with the opening of the Atlantic and is extensively covered by Mesozoic (~250 Ma to ~65 Ma) continental margins and the Atlantic Ocean. Nevertheless, its remains still constitute impressive mountain ranges.

The study of young active mountain systems provides knowledge and understanding of the dynamics of mountain building that may be used to understand contemporary and ancient systems, and can aid in effective management and hazard mitigation in mountainous regions. The aim of this chapter is to provide a framework for understanding the evolution of Cenozoic mountain systems that can be applied to help explain contemporary landscapes and the evolution of ancient and young orogens. Particular emphasis is placed on the Alpine–Himalayan–Tibetan orogen that constitutes part of the highest and greatest mountain mass on Earth and is hence one of the best natural laboratories to study the nature and dynamics of orogenic processes.
2 Geographic extent of global mountain belts

The association of young active mountains with plate boundaries reveals that major mountain systems occur in three main tectonic settings: continental–continental collision zones; subduction related settings (oceanic–oceanic and continental–oceanic collision zones); and oceanic spreading ridges. Other young mountains, however, are associated with transform plate boundaries, hotspots, rift systems and passive margins.

The longest mountain system is associated with the oceanic spreading ridges and extends for >40000 km (Figure 2.1). Although these mountains may rise in elevation by >5 km from the ocean floors, they only occur above sea level where an oceanic spreading ridge astrides a hotspot. The Icelandic hotspot that is broadly coincident with the mid-Atlantic ridge and helps to form Iceland provides a contemporary example (Gudmundsson, 2000).

The largest mountain mass on Earth, however, is the Alpine–Himalayan–Tibetan system. This stretches from the Betic Mountains in Southern Spain through the European Alps, the Turkish–Iranian Plateau, the Zagros Mountains, the Himalaya, the Tibetan Plateau, to the Sumatra arc of Indonesia and is some 7000 km long and exceeds 2000 km at its widest part (Figure 2.1). Mountain ranges such as the Tien Shan and Gobi Altai Mountains are also part of this orogen. These mountains are associated with the collision of the African and Indian continental lithospheric plates with the Eurasian continental lithospheric plate.

The Circum-Pacific oceanic–oceanic and continental–oceanic collision zones constitute the next major mountain systems of note. These include the Antarctic Peninsula, Andes, Western Cordillera of North America, and the volcanic island arcs of the Aleutians through to Japan and the Philippines and on to New Guinea (Figure 2.1).

Mountain systems that are associated with other tectonic settings and include transform plate boundaries, passive margins and hotspots are not really of continental/global scale but are impressive topographic features (Figure 2.1). These include the Alps of New Zealand, which provide one of the best examples of a mountain system associated with a transform plate boundary. This is the result of the relative motion between the Antarctic, Indian–Australian and Pacific plates (Tippett and Hovius, 2000; Williams, this volume). The Transverse Ranges of Southern California within the San Andreas–Gulf of California transform system provide another example of a mountain system within a transform plate boundary (Cox et al., 2003). These essentially form within the double bend of the San Andreas fault system and they rise from a few hundred metres to 3500 m above sea level (asl) within little more than 10 km.

The Western Ghats of India and Drakensberg Mountains of South Africa are impressive examples of mountain ranges that have formed along passive margins (cf. Ollier, this volume). These are thought to be the result of uplift due to denudational unloading and isostatic flexuring as the adjacent plateau regions are eroded along their margins (Gilchrist and Summerfield, 1990, 1994; Summerfield, 1991a, b; Brown et al., 2000; Gunnell and Fleitout, 2000).

Mountains produced by hotspots are a consequence of regional warping and associated volcanism and rifting. The Grand Tetons in Wyoming provide a spectacular example of uplift along a rifted margin associated with a hotspot, in this case related to the Yellowstone hotspot (Love and Reed, 1971; Pierce and Morgan, 1992). The Hawaiian Islands–Emperor Seamount chain provide an example of volcanic mountains that have grown over the Hawaiian hotspot as the Pacific plate has moved progressively northwestwards and then westwards over time. However, such mountains subside as they are tectonically transported away from the hotspot and as their mass increases and causes isostatic subsidence (Watts and ten Brink, 1989).
3 Characteristics of Cenozoic mountain belts

The greatest mountain systems traverse many climatic belts. As a consequence they include along their length nearly every environmental and geomorphic setting. For example, they may include tropical rainforest, deciduous forest, alpine meadows, tundra, desert and glacial environments (Troll, 1973a, b). Since most Cenozoic mountains exceed 5000 m asl, they are extensively glacierized. They commonly have a precipitation gradient across their ranges and rainshadows on their leeward slopes. The steep slopes and glacierized catchments result in high river discharges and extensive landsliding.

The geomorphic processes within these environments play a major role in shaping the landscapes. Furthermore, it is becoming increasingly apparent that denudation influences the tectonism in these regions by such processes as denudational unloading and basin subsidence resulting from the thick piles of sediments that are deposited in the forelands (Montgomery, 1994; Gilchrist et al., 1994; Shroder and Bishop, 2000; Bishop et al., 2002).

Dramatic climatic changes have taken place throughout the Cenozoic, and particularly throughout the Quaternary. This has caused major fluctuations in the magnitude and frequency of Earth surface processes in mountain regions. Moreover, the mountain uplift may have also contributed to climate change throughout the Cenozoic by affecting global atmospheric circulation, deflecting jetstreams, initiating and enhancing monsoons and altering biogeochemical cycles (Ruddiman and Kutzbach, 1989; Raymo and Ruddiman, 1992; Ruddiman, 1997, 1998; Ramstein et al., 1997). Such are the links and feedbacks between tectonism, climate, Earth surface processes and biology that research in the evolution of Cenozoic mountain systems is becoming increasingly multidisciplinary.

Despite the variety of tectonic and geomorphic settings for mountain systems, the two largest subaerial mountain systems, the Alpine–Himalayan–Tibetan and the Circum-Pacific systems, have a number of similarities in their evolution and geologic characteristics. In the mature stages of the orogen, the mountain system may be broadly divided into geologic and topographic belts. These are illustrated in Figure 2.2(A) and include:

1. an outer foredeep or foreland basin;
2. a foreland fold-and-thrust belt;
3. a crystalline core complex that includes: sedimentary rocks and their basement; volcanic and igneous rocks and associated sediments; metamorphosed ocean crust (ophiolites); gneissic terranes with abundant ultramafic bodies; and granitic batholiths;
4. rectilinear (high-angle) fault zones.

The Himalayan–Tibetan region illustrates this well. It exhibits all these belts, although they are developed to varying degrees along different transects of the orogen (Figure 2.2(B)–(D)).

Geologic observations of orogenic belts suggest that a sequence of events occurs as part of an orogenic cycle (Moores and Twiss, 1995). These events are summarized in Table 2.1. Dilek and Moores (1999) illustrate some of these similarities in their comparative study of the early Tertiary Western United States Cordillera and the modern Tibetan and Turkish–Iranian Plateau. They stressed that, as a consequence of an orogenic belt becoming overthickened, the mountains become the loci of lithospheric extension and experience tectonic collapse during their late-stage post-collisional evolution. It follows that the hinterland of major orogenic belts share a common taphrogenic (rupturing) evolutionary path. This is related to rapid increase in the geothermal gradient and thus rapid isobaric heating, prograde high-temperature metamorphism, intrusion of post-tectonic granites and the extrusion of ignimbrites and associated minor extension. This phase is commonly followed by a further increase in the geothermal gradient, accelerated lithospheric extension and thinning with erosional denudation, superposition of high-temperature/low-pressure metamorphic assemblages, mantle partial melting...
Figure 2.2 Comparison of selected cross-sections across the Himalayan–Tibetan orogenic belt with a schematic cross-section across a model composite orogenic belt. (A) Model composite orogenic belt showing the major structures and tectonic components (adapted from Hatcher and Williams, 1986, and Moores and Twiss, 1995). Schematic sections across (B) the Himalaya, Tibet and Qilian Shan from Nepal to the Hexi Corridor (after Yin and Harrison, 2000); (C) the western Himalaya and central Karakoram (after Searle, 1991); and (D) the Himalaya, Kohistan and Pamir (adapted from Mattauer, 1986). Figure 2.5 shows the locations of sections (B), (C) and (D). GCT, Greater Counter Thrust; GT, Gangdese Thrust; ISZ, Indus Suture Zone; K2T, K2 Thrust; KBL, Karakoram Batholith Lineament; MBT, Main Boundary Thrust; MCT, Main Central Thrust; MKT, Main Karakoram Thrust; MMT, Main Mantle Thrust; PPT, Pir Panjal Thrust; STDS, South Tibet Detachment System; SSZ, Shyok Suture Zone; VAT, Vale of Kashmir Thrust; XF, Xianshuihe Fault; ZSZ, Zanskar Shear Zone. The Moho marks the boundary between the crust and the mantle.
and mafic magmatism, and rapid subsidence and deposition of nonmarine sediments. This sequence of events and the similarity of tectonic structures for the Tibetan Plateau and Himalaya, Turkish–Iranian Plateau, and Western US Cordillera and Great Basin are summarized in Table 2.2 and Figure 2.3. In Figure 2.3(C) it should be noted that the North American craton is underplating the Sevier thrust belt and the overall morphology and tectonics of the high plateau and the Great Basin are analogous to the Tibetan Plateau and Turkish–Iranian Plateau. Furthermore, the Great Basin, Himalayan–Tibetan and Turkish–Iranian plateaux all adjoin a suture zone (union of lithospheric scale units), where continental apposition occurred and where major shortening and imbrication took place resulting in crustal overthickening and surface uplift.

Clearly, these observations and sequence of events are somewhat simplistic and the evolution of each individual orogen varies spatially and temporally. This model, however, does provide a working framework to help understand the evolution of Cenozoic and ancient mountain systems. Some of these differences and the detailed evolution of several of the major mountain ranges will now be discussed in more detail.

4 Alpine–Himalayan–Tibetan orogenic belt

The Alpine–Himalayan–Tibetan orogenic belt incorporates the Betic Mountains, European Alps, Zagros, Himalaya, Trans-Himalaya, Tibetan Plateau and its ranges, Tien Shan and the Gobi Altai. Several major zones of continental–continental collision are evident along its length and these include: the Alps (African–European collision); the Turkish–Iranian Plateau (Arabian–Asian collision); and the Himalayan–Tibetan orogen (Indian–Asian collision) (Figure 2.1). These major zones of convergence, for most of the orogen, are shown in Figure 2.3(C). Until the beginning of the 1980s little attention had been given to the orogen outside of the Alps. This was mainly due to political and logistical problems. However, during the last two decades considerable efforts have been made to study the evolution of Tibet and its bordering mountains. Unfortunately, studies of the Turkish–Iranian Plateau are still few because of the difficulties of fieldwork in this politically sensitive part of the world.

Some of the first orogenic studies were undertaken in the European Alps and their influence still persists in modern geology (Hsu, 1995). For example, the concept of fold nappes (sheet-like units of deformed rock that have moved on a predominant horizontal surface as a result of thrust faulting, recumbent folding or both mechanisms) was first introduced in 1841 by an Alpine geologist, Escher...
Table 2.2 – Nature and chronology of tectonic and magmatic events during the taphrogenic evolution of orogenic belts with comparisons from the Tibetan Plateau and Himalaya, Turkish-Iranian Plateau, and Western US Cordillera and Great Basin

<table>
<thead>
<tr>
<th>TECTONIC EVENT</th>
<th>MAGMATISM</th>
<th>TIBETAN PLATEAU & HIMALAYA</th>
<th>TURKISH-Iranian PLATEAU</th>
<th>WESTERN US CORDILLERA & GREAT BASIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block-faulting & thick-skinned extension</td>
<td>Bimodal volcanism (alkaline basalts and peralkaline rhyolites); subcontinental mantle involvement in magmatism</td>
<td>Basaltic volcanism (6–0 Ma)</td>
<td>Alkaline basaltic volcanism, basanite (5–0 Ma)</td>
<td>Block-uplift of the Sierra Nevada (6 Ma)</td>
</tr>
<tr>
<td>Thin-skinned extension, denudation, crustal exhumation; tectonic escape via lateral extrusion</td>
<td>K-rich, aluminous silicic to intermediate magmatism (crustal isotope ratios)</td>
<td>Peraluminous granites (15–10 Ma)</td>
<td>N–S shortening; E–W strike-slip faulting (12–0 Ma)</td>
<td>Pre- Basin & Range extension: ‘Ignimbrite flare-up’, ryolitic to dacitic, andesitic eruptions; shallow-level granite intrusions (40–17 Ma)</td>
</tr>
<tr>
<td>Collision, contraction, crustal thickening; ophiolite emplacement</td>
<td>Peraluminous granites (S-type); crustal anatexis</td>
<td>Leucogranites (28–12 Ma)</td>
<td>High-K, high-Al rhyolite ignimbrites (8–6 Ma)</td>
<td>Metamorphic core complex formation (Miocene)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N–S shortening, E–W extension</td>
<td>Metamorphic core complex formation (Miocene)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ophiolite emplacement (Late Cretaceous)</td>
<td>Two-mica granites (80–65 Ma)</td>
<td>Strike-slip faulting (Late Mesozoic–Early Cenozoic)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ophiolite emplacement (Late Cretaceous)</td>
<td>Sevier orogeny (110–90 Ma)</td>
</tr>
</tbody>
</table>

van der Linth (Ryan, 2000). Despite the Alps being the most studied of all orogenic belts, its history has still to be fully understood because of its complex evolution involving a combination of subduction of Mesozoic oceanic crust, ophiolite emplacement, back-arc spreading, volcanism, metamorphism, thrusting and nappe emplacement, denudation and foreland basin sedimentation.

The Alpine sector of the Alpine–Himalayan orogenic belt is extensive, stretching from Gibraltar to Turkey, and includes the Betic Mountains, European Alps, Dinarides, Hellenides and Carpathians, while the Turkish–Iranian sector includes the Turkish–Iranian and Zagros Mountains (Figures 2.3 and 2.4(A)). The Alpine–Iranian belt developed on late Palaeozoic Hercynian (345–225 Ma) and late Proterozoic–early Palaeozoic Pan-African (800–500 Ma) orogenic belts as the continental plates of Africa and Arabia advanced into the Eurasian continental plate. The movement of Africa and Arabia into Eurasia is the consequence of the opening of the Atlantic and Indian Oceans. The convergence history is therefore complex and this has resulted in an orogen that varies considerably along its length. It has also resulted in abrupt curves and large changes in the strike of fold-and-thrust belts along its length. Bends of 90° to 180°, for example, characterize the Gibraltar region, the Alps, the Carpathians and the Balkanides. These bends, together with the complex fold-and-thrust vergences, suggest that considerable rotation and/or strike-slip deformation must have taken place. Furthermore, as illustrated in Figure 2.4(B), the orogen is more complex than the simple bilateral model shown in Figure 2.2(A). This section through the Swiss Alps shows two outward-directed thrust sequences on either side of a metamorphic core, associated with an apparent offset of the Moho (the Mohorovičić Discontinuity, which marks the boundary between the crust and mantle). In comparison, the orogen is more symmetrical in the Dinarides and the Carpathians where thrusts verge in opposite directions away from the volcanic rich Pannonian Basin (Figure 2.4(A)). Similarly in Turkey, the Tauride and Pontide thrust complexes bound either side of a central core of deformed and metamorphosed rock and younger volcanic rock that underlie the central Anatolian Plateau (Moores and Twiss, 1995).
No one model explains the tectonic evolution of the whole of the Alpine–Iranian sector. Nevertheless, much of the alpine sector can be explained by developing a model that involves the formation and deformation of island arcs and associated basins, and the collision of a microcontinent (Penninic) with the Apulia (eastern Italy, the Ionian Sea, Slovenia, Croatia, Bosnia, Albania, Montenegro, Greece and western Turkey), and ultimately Europe (Roeder, 1977). Simplified, the Alpine sector really began to form in the middle Cretaceous (~120 Ma) with the subduction of the southern ocean basin beneath an island arc that was separated from the passive margin of the Apulian terrane by a marginal basin. This was followed (~110 Ma) by the collision of the Penninic microcontinent and deformation of the overriding island arc and marginal basin. During the late Cretaceous (~90 Ma), the Apulian continental margin overrode the marginal basin intensifying the collision zone. Following this, the northern basin closed as it was subducted under an arc separated from the rifted passive margin (Helvetic miogeocline) by a back-arc basin. The southern continental mass collided and overrode the northern continental mass deforming the arc, back-arc basin and Helvetic miogeocline.

Figure 2.4 Characteristics of the Alpine–Mediterranean sector of the Alpine–Himalayan orogenic belt. (A) Simplified geologic map showing the main structural features (adapted from Dewey et al., 1973, and Moores and Twiss, 1995). (B) Cross-section through the Swiss Alps showing recumbent nappes and root fold in the crystalline core zone of the Alps (after Laubscher, 1982).
during the early Miocene (~20 Ma). Since the late Neogene (5–0 Ma) there has been continued con-
vergence and shortening resulting in nappe emplacement and backfolding (Roeder, 1977; Moores and
Twiss, 1995).

Although the Himalayan–Tibetan orogen is commonly considered to be one of the youngest
mountain belts, its history spans far beyond the beginning of the Cenozoic. Initially, throughout the
early Palaeozoic, this involved the sequential accretion of microcontinents and island arcs onto the
southern margin of Eurasia (Hsu et al., 1995; Sengor and Natal’ in, 1996). This was followed by the col-
lision of the Indian continental lithospheric plate with the Eurasia continental lithospheric plate
between 50 and 70 Ma (Yin and Harrison, 2000). During the past 40–50 Ma the Indian plate has been
moving at a nearly constant rate of ~50 mm a⁻¹ northward with respect to stable Eurasia, resulting
in between 1400 and 2000 km of crustal shortening (Molnar and Tapponnier, 1975; Patriat and
Achache, 1984; DeMets et al., 1994). Ultimately, this led to the formation of the present Tibetan
Plateau and the adjacent mountains. The collision of India into Asia helped to rejuvenate the Tien Shan
orogen and has affected regions as far north as the Gobi Altai Mountains and Baikal rift, and may have
played a role in the opening of the South China Sea (Molnar and Tapponnier, 1975, 1978; Tapponnier
et al., 1986; Hendix et al., 1994; Abdrakhmatov et al., 1996; Cunningham et al., 1996).

The region is, seismically, one of the most active in the world (Holt et al., 1995; Chen and Kao, 1996;
Chen et al., 1999). The partitioning of the post-collisional crustal shortening is complex and is essen-
tially divided between crustal thickening and lateral extrusion along strike-slip fault systems (Avouac
and Tapponnier, 1993; Houseman and England, 1996). Estimating the post-collisional shortening is dif-
ficult because of the uncertainty associated with estimating the initial crustal thickness before the
Indian–Asian collision and because the shortening is distributed beyond the Himalayan–Tibetan
region, with a substantial amount occurring in the Tien Shan (Murphy et al., 1997). Yin and Harrison
(2000) suggest that the shortening since the Indian–Asian collision is distributed as follows: >360 km
across the Himalaya, >60 km across the Gangdese thrust system, ~250 km along the Shiquanhe–Gaize–Amo thrust system, >60–80 km across the Fenghuo Shan–Nangqian fold-and-thrust belt, ~270 km across the Qimen Tagh–North Kunlun thrust system, and ~360 km across the
Nan Shan thrust belt. Furthermore, they suggest that the shortening is expressed in two modes at the
surface: (a) discrete thrust belts with relatively narrow zones of contraction or regional décollement
(a detachment structure resulting from deformation), and (b) distributed shortening over a wide
region involving basement rocks.

A compilation of the rates of shortening and strike-slip faulting on Holocene and late Pleistocene
timescales is summarized in Figure 2.5. These data are based on measuring and dating offset landforms
and displaced outcrops. The current rate of deformation is beginning to be quantified by Global
Positioning System (GPS) measurements (King et al., 1997; Larson et al., 1999; Wang et al., 1999;
Chen et al., 2000). These studies show relatively good agreement with the geologic data, yet they are
somewhat limited by the short duration over which the measurements have been undertaken.

Numerous models have been constructed to help understand the geodynamics of the Indian–
Asian collision and they involve numerical simulation of indentation of a viscous thin-sheet (England
and McKenzie, 1982; Vilotte et al., 1982; England and Houseman, 1989; Ellis, 1996; Yang and Lui,
2000), analogue models of indentation of a plasticine plane (Tapponnier and Molnar, 1976; Tapponnier
et al., 1986; Peltzer and Tapponnier, 1988) and three-dimensional (3-D) finite element modelling (Lui
et al., 2000). Such modelling studies add to the knowledge and understanding of the deep structure of
the Himalayan–Tibetan orogen and they complement the deep crustal research (Nelson et al.,
1996; Owens and Zandt, 1997).

The timing of the Tibetan plateau uplift has been difficult to quantify because of the uncertainty in
determining palaeoaltitudes (cf. Gregory and Chase, 1992). Several uplift patterns have been proposed (Harrison et al., 1992, 1998), but recent geologic data suggest that the initiation and rates of uplift varied considerably across the orogen (Chung et al., 1998). Furthermore, Murphy et al. (1997) suggested that a significant portion of southern Tibet was elevated before the Indian–Asian collision and Chung et al. (1998) suggested that northeastern Tibet had uplifted by 40 Ma, while in western Tibet the uplift occurred at about 20 Ma. These observations are consistent with sedimentation records from the Ganges–Brahmaputra delta and the Bengal fan (Chung et al., 1998). The uplift history also helps to explain the nature of the strontium isotope evolution of the oceans and global cooling over the past 20 Ma (Chung et al., 1998).

By about 14 Ma, the Tibetan Plateau had become sufficiently thick that it began to extend gravitationally (Coleman and Hodges, 1995). Two types of extensional structures are apparent: the south Tibetan fault system, a family of east-striking shallow to moderate north-dipping normal faults exposed near the crest of the Himalaya from Bhutan to northwest India; and numerous north-trending rift systems that largely dictate the topographic pattern of the southern Tibetan Plateau (Armijo et al., 1986; Wu et al., 1998; Yin et al., 1999; Yin, 2000; Blisniuk et al., 2001; Hurtado et al., 2001).

Figure 2.5 Digital elevation model of Tibet and the bordering mountains showing the major faults and sutures. Estimates of late Quaternary strike-slip, convergence and extension rates are shown in millimetres per annum (after Larson et al.’s (1999) compilation of recent data). The sections B, C and D are shown in Figure 2.2. AF, Altai fault; AKMS, Ayimaqin–Kunlun–Mutztagh suture; ASRR, Ailao Shan–Red River shear zone; ATE, Altyn Tagh fault; BNS, Bangong Nujiang suture; GTFS, Gobi–Tien Shan fault system; HF, Haiyuan fault; ITS, Indus Tsangpo suture; JHF, Junggar Hegen fault; JS, Jinsha suture; KF, Karakoram fault; KFZ, Karakoram Jiali fault zone; KLF, Kunlun fault; KS, Kudi suture; LSF, Longmen Shan fault; MBT, Main Boundary Thrust; MCT, Main Central Thrust; MKT, Main Karakoram Thrust (Shyok suture zone); MMT, Main Mantle Thrust; NGF, North Gobi fault; NQS, North Qilian suture; NTSF, North Tien Shan fault; STSF, South Tien Shan fault; TFF, Talus–Fergana fault; XF, Xianshuie Fault. Adapted from Searle (1991); Cunningham et al. (1996); Chung et al. (1998); Yin et al. (1999); Yin and Harrison (2000); Blisniuk et al. (2001); Hurtado et al. (2001).
These structures are summarized on Figure 2.5 and the relationship to the evolution of the Himalayan–Tibetan orogen is reviewed in Table 2.2 and Figure 2.2.

The uplift and subsequent denudation of the Himalayan–Tibetan orogen resulted in a varied topography and geology. This is summarized in Figures 2.2 and 2.5. Several pervasive structures are present along the length of the Himalaya. These include: the Main Boundary Thrust that delimits the southern margin of the Himalaya; the Main Central Thrust that forms a major crustal suture zone within the Indian plate; and the Main Mantle Thrust (Indus Tsangpo Suture) that marks the main boundary between the Indian and Asian continental plates. Other major thrusts and sutures are present, but they are not so regionally pervasive; they include the K2 Thrust, Karakoram Batholith Lineament, Pir Panjal Thrust and the Vale of Kashmir Thrust. Several major sutures traverse Tibet and include the Bangong Nujiang, Jinsha and Ayimaqin–Kunlun–Mutztagh sutures, which started to form during the Palaeozoic. In addition, continental-scale strike-slip fault systems transverse Tibet and include the Karakoram, Altyntagh and Kunlun faults, and the Ailao Shan–Red River Shear Zone. These are considered to be important in allowing the regional shortening to be accommodated as eastward lateral extrusion (Tapponnier and Molnar, 1976). For example, the total slip along the Altyntagh fault during the Cenozoic probably exceeds 600 km (Yin and Harrison, 2000) and along the Karakoram fault it is >100 km (Searle and Owen, 1999). The Altyntagh and Karakoram faults act as major transfer faults linking major thrust belts and extensional systems, respectively (Figure 2.5).

The Trans-Himalayan Batholith is an important component of the Himalayan orogen. It is discontinuous along the entire length of the Trans-Himalaya, some 2500 km. Along the eastern stretch it occurs north of the Indus–Tsangpo suture and it was emplaced into an Andean-type margin during the mid-Cretaceous and in the Palaeocene–lower Eocene (England and Searle, 1986; Debon et al., 1986). In the west, in northern India and Pakistan, it forms the Kohistan–Ladakh arc. This was an island arc that grew on the northern side of the Neo-Tethys Ocean that separated India from Eurasia during the mid-Cretaceous. The arc collided with the Karakoram plate at between 102 and 85 Ma to become the leading edge of an active continental margin under which the Neo-Tethys was subducted (Petterson and Windley, 1985; Coward et al., 1987; Reuber, 1989) (Figures 2.2(C) and 2.2(D)). This arc was intruded by an Andean-type granodiorite batholith between 78 and 75 Ma, and 48 and 45 Ma (Sullivan et al., 1993). The Indian plate eventually collided with the arc during the earliest Eocene and the continuous underthrusting of the Indian plate below the arc led to crustal thickening and melting and the intrusion of leucogranites at ~30 Ma and subsequent deformation (Petterson and Windley, 1985).

The occurrence of syn-collisional igneous activity is an important characteristic of the Himalayan–Tibetan orogen (Figure 2.2(B)–(D); Table 2.2). Yin and Harrison (2000) listed five different mechanisms that may have been responsible for the generation of syn-collisional igneous activity. These are: (i) an early crustal thickening followed by slip along a shallow dipping décollement (Himalayan leucogranites); (ii) slab break-off during the early stage of the Indian–Asian collision (Linzixong volcanic sequence in southern Tibet); (iii) continental subduction in southern and central Tibet, which generated calcalkaline magmatism; (iv) formation of releasing bends and pull-apart structures that serve both as a possible mechanism to generate decompressional melting and as conduits to trap melts (Pulu basalts and other late Neogene–Quaternary volcanic flows along the Altyntagh and the Kunlun faults); (v) viscous dissipation in the upper mantle and subduction of Tethyan flysch complexes to mantle depths may be the fundamental cause of widespread and protracted partial melting in the Himalayan–Tibetan orogen in the Cenozoic.

The presence of calcalkaline type volcanism in southern and central Tibet suggests that some portion of the continental crusts from both the north and south must have been subducted into the mantle beneath Tibet (Yin and Harrison, 2000).
The role of denudation in shaping the Himalayan–Tibetan region is a subject of intense debate. Molnar and England (1990), for example, hypothesized that Cenozoic climatic change would have increased glaciation throughout the Himalaya and this, and its associated processes, would have increased erosion creating deeply incised valleys. They argued that high isolated mountain peaks would have been isostatically uplifted because of the denudation unloading caused by the deep valley incision. This helps increase the maximum elevation of the mountains. Others argue that the geometry of the valleys and the erosion rates are not significant to allow such uplift to occur (Harbor and Warburton, 1992; Whittington, 1996; Whipple and Tucker, 1999).

Zeitler et al. (2001) proposed an interesting model relating erosion, geomorphology and metamorphism in the Nanga Parbat Himalaya in northern Pakistan. Nanga Parbat is the ninth highest mountain in the world and is essentially defined by the Main Mantle Thrust that forms a syntaxis around Nanga Parbat and Haramosh massifs (Figure 2.6(A)). The core of the Nanga Parbat massif is characterized by very young (<3 Ma) granites, low-P cordierite-bearing granulites, low seismic velocities, resistive lower crust and shallow microearthquakes implying shallow brittle-ductile transition bowed upwards by ~3 km. Incision rates for the Indus River in this region are in the order of 2–12 mm a\(^{-1}\) (Burbank et al., 1996) and tributary valley incision rates around Nanga Parbat are 22±11 mm a\(^{-1}\) (Shroder and Bishop, 2000). Zeitler et al. (2001) proposed that the incision that produced the deep river gorge of the Indus helps weaken the crust in this region. This, in turn, encourages failure and helps draw in advective flow toward the topographic gap (Figure 2.6(B)). This builds elevation and, together with the incising river, builds relief and leads to high erosion rates. The result is a steepened thermal gradient, which raises the brittle-ductile transition, and further weakens the crust. Deep and mid-crustal material can then experience decompression melting and low-P–high-T metamorphism as it is moved rapidly to the surface. They called this process a ‘tectonic aneurysm’ and they believe that this is an important orogenic process in continental–continental collision zones.

The study of these continental–continental collision zones provides an insight into the evolution of the continents and helps in understanding and explaining the nature and distribution of ancient mountain systems. It is necessary, however, to examine active oceanic–oceanic and oceanic–continental
collision zones to fully understand the early evolution of continental–continental collision zones. The Circum-Pacific orogenic belt provides such an opportunity and, ultimately, it may itself become a continental–continental collision zone in the distant future.

5 Circum-Pacific orogenic belt

The Circum-Pacific orogenic belt can be broadly divided into eastern and western sectors (Figure 2.1). The western sector of the Circum-Pacific orogenic belt is the result of convergence of oceanic plates including the Pacific, Philippine and Indian–Australian plates, and the eastern margin of the Eurasian plate (Figure 2.1). This sector; however, is discontinuous and includes volcanic island arcs and arc–collision zones. The associated mountains are not very geographically extensive, but nevertheless are impressive in terms of their relative relief and rates of erosion.

Taiwan, the Philippines, New Guinea and the Vanuatu arc in the southeast Pacific provide the best examples of arc–continental and arc–arc collisions. The convergence in this region is complex, with the interaction of the Pacific, Indian–Australian, Eurasian and Philippine plates, and two major trench–trench–trench triple junctions. Landforms include volcanic chains, fold-and-thrust belts and accretionary wedges. Taiwan provides one of the best examples of an area of rapid mountain uplift that is a consequence of arc–continental collision. The island rises to 3997 m asl and formed during the past 4.5 Ma as the Philippine Sea plate moved northwest into the Eurasian continental plate at a rate of \(70 \text{ km Ma}^{-1}\) (Seno, 1977; Angelier et al., 1986; Lee and Wang, 1987; Figure 2.7). Intense internal deformation and metamorphism has resulted in tectonic uplift rates of between 1 and 10 mm a\(^{-1}\) (Lin, 1991; Wang and Burnett, 1991). This uplift, together with rates of denudation of between 1 and 5 mm a\(^{-1}\) (Li, 1976) that are a consequence of the extreme monsoonal climate with its frequent tropical cyclones, has resulted in one of the youngest and most dynamic landscapes on Earth.

![Figure 2.7](image)

Figure 2.7 The geologic setting of Taiwan and its associated mountain ranges. (A) Schematic plate tectonic setting (after Lin, 2000). (B) Major faults, and geologic and geomorphic units (after Chang, 2000)
The Andes chain and North American Cordillera are the two greatest mountain ranges in the Circum-Pacific orogenic belt and stretch almost continuously for >20000 km. These constitute the eastern sector of the Circum-Pacific orogenic belt. Their evolution is essentially the consequence of the convergence of the oceanic and continental plates. Today this includes the collision of the Pacific, Juan Fuca, Cocos and Nazca oceanic plates with the North and South American continental plates (Figure 2.1). Presently, the margin is consumed beneath Alaska, the US Pacific Northwest and southwestern Canada, Central and South America, the Scotia Arc and the Antarctica Peninsula. Transform margins are present, connecting the trenches of Alaska and the Pacific Northwest and connecting the Mendocino triple junction to the Gulf of California, which comprises the San Andreas fault system (Moores and Twiss, 1995). The mountains along this sector of the Circum-Pacific orogenic belt have a long and complex history beginning in the late Precambrian. Most of the mountain building that produced the present landscapes, however, has occurred during the last 200 Ma (Figures 2.1 and 2.8). Structures verge towards the forelands on the eastern and western sides of the mountain belts, but there is a strong asymmetry within the orogens (Figure 2.8).

The Andean chain has been a site of continental accretion, crustal growth, and both compressional and extensional deformation throughout the Phanerozoic. Palaeozoic subduction and accretion resulted in the amalgamation of various terrains, associated with regional compression events (Ramos, 1988). Since the Triassic (~225 Ma) the southern Andes have formed a classic continental-type subduction margin and with no further terrain accretion. The northern Andes are more complex, influenced by Caribbean tectonics and the relative motion of the North and South America plates. This resulted in the accretion of island-arcs during the latest Mesozoic and early Tertiary. During the Jurassic and Cretaceous there was extensive rifting in fore-arc and back-arc basins, and magmatic activity along the length of the Andes that included the emplacement of massive granite batholiths (McCourt et al., 1984; Jaillard et al., 1990; Kay et al., 1991). Increased plate convergence occurred during the early Cenozoic and middle to late Cenozoic resulting in major regional deformation (Allmendinger et al., 1983; Jordan et al., 1983). During this time the eastern Andes flexed downwards in response to deformation and crustal loading. This resulted in a series of Cenozoic foreland basins that contain thick (~5 km) sequences of terrestrial sediments. This general pattern of events is similar throughout the Andes, but, as illustrated in Table 2.3, the timing of orogenic events is diachronous along the mountain belt.

Like the Andes, the North American Cordillera has a complex history of continental accretion, crustal growth, and both compressional and extensional deformation. In addition, however, the southern stretch has also experienced the development of a continental transform plate boundary. This formed during the latter part of the Cenozoic, probably as a consequence of the subduction of the Pacific–Farallon ridge-transform system under North America (Atwater and Molnar, 1973; Atwater, 1989) (Figure 2.8). Several belts of deformation of different ages are present throughout the orogen. Palaeozoic deep-water rocks of the so-called 'eugeocline' were deformed by the Antler and Sonoma orogenies during the Devonian–Mississippian and Permo-Triassic, respectively (Speed et al., 1988). A phase of major deformation during the Sevier orogeny in the late Jurassic to late Cretaceous produced an extensive fold-and-thrust belt that extends from southeast California to Canada (Allmendinger and Jordan, 1981) (Figures 2.3 and 2.8). A complex hinterland of thick Palaeozoic shallow-water rocks of the 'miogeosyncline' is present east of this belt. These are involved in major Mesozoic nappes, Tertiary low-angled denudational faulting and metamorphic core complexes of Mesozoic and Tertiary age (Dilek and Moores, 1999). The easternmost segment of the North American Cordillera was deformed during the Cretaceous–Tertiary Laramide orogeny. This involves Precambrian crystalline crust and Palaeozoic–Mesozoic platform sedimentary rocks (Hamilton, 1988).
Figure 2.8 Geologic characteristics of the North American Cordillera and Andes showing the major tectonic features. The Andes are divided into seven segments (A to G) and their geologic history is summarized in Table 2.3. After King (1977), Megard (1989), Mpodozis and Ramos (1989) and Moares and Twiss (1995), and the geologic cross-sections are adapted from Moares and Twiss (1995), after Maxwell (1974), Roeder and Mull (1978), Csejtey et al. (1982), Potter et al. (1986), Allmendinger et al. (1987), Roeder (1988), Mpodozis and Ramos (1989) and Vicente (1989).
Table 2.3 – Time–space diagram showing the principal tectonic events along the length of the Andes

<table>
<thead>
<tr>
<th>SEGMENT</th>
<th>PERMIAN</th>
<th>TRIASSIC</th>
<th>JURASSIC</th>
<th>CRETACEOUS</th>
<th>TERTIARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Colombia–Ecuador</td>
<td></td>
<td></td>
<td></td>
<td>E-vergence collision</td>
<td>E-vergence collision W-vergence collision</td>
</tr>
<tr>
<td>B) Peru–Bolivia</td>
<td></td>
<td></td>
<td></td>
<td>Folding Batholith to west</td>
<td>Arequipa Allochthon Folds and thrusts</td>
</tr>
<tr>
<td>C) N. Chile–Argentina</td>
<td></td>
<td></td>
<td></td>
<td>Basins inversion</td>
<td>Volcanics in longitudinal valley</td>
</tr>
<tr>
<td>D) Central Chile–Argentina</td>
<td>Coastal Plutons</td>
<td></td>
<td></td>
<td>Marginal basin</td>
<td>Aconcagua fold-thrust belt</td>
</tr>
<tr>
<td>E) S. Chile–Argentina (Nequen)</td>
<td></td>
<td></td>
<td></td>
<td>Arc volcanism to W.</td>
<td>Foredeep E-vergence deformation Strike-slip fault</td>
</tr>
<tr>
<td>F) Chile–Argentina (Chioe-Rio Mayo)</td>
<td></td>
<td></td>
<td></td>
<td>Silic volcanics, high Andes</td>
<td>Normal faults Minor folds</td>
</tr>
<tr>
<td>G) Chile–Argentina (Tierra del Fuego)</td>
<td></td>
<td></td>
<td></td>
<td>Arc to west</td>
<td>Foredeep metamorphic core complex</td>
</tr>
</tbody>
</table>

Notes: The heavy dashed line indicates the onset of the main Andean deformation. The location of each segment is shown in Figure 2.8.

The prolonged Mesozoic orogeny produced a north-trending crustal high that had a maximum thickness of about 60 km and an elevation of >3 km (Wolfe et al., 1997). By the mid-Tertiary, this highland region had begun to undergo orogenic extension resulting in the exhumation of metamorphic cores and widespread calcalkaline volcanism. The early stage of orogenic collapse was followed by the Basin and Range extension at between 18 and 16 Ma and associated volcanism (Coney, 1987). This ultimately produced the Great Basin with a mean elevation of ~1.5 km asl and a crustal thickness of ~30 km (Thompson and Burke, 1974; Wolfe et al., 1997). The succession of events that is important in producing the present orogen is summarized in Table 2.2 and discussed above in comparison with the Tibetan Plateau and the Turkish–Iranian Plateau.

The mountains of the Circum-Pacific orogenic belt help illustrate the variety of tectonic settings that can produce substantial relief along different types of convergent and transform plate boundaries. Furthermore, they provide valuable models for understanding the orogenic evolution of orogens that ultimately become continental–continental collision zones such as the Alpine–Himalayan–Tibetan orogen.

6 Ocean ridges

As a type of global mountain system, oceanic ridges are commonly neglected. This is probably because they are the least well studied owing to their inaccessibility. Ocean ridges occur in mid-ocean settings associated with divergent oceanic plates and back-arc spreading centres behind volcanic arcs of subduction zones. Mid-ocean ridges are between 1000 and 4000 km wide, they rise 2–3 km above the surrounding ocean floors and their crests have an average depth of 2500 m below sea level (Nicholas, 1995) (Figure 2.1). Back-arc spreading centres are considerably smaller than the mid-oceanic ridges and therefore little attention is given to them in this section.

Oceanic ridges are elevated because they consist of rock that is hotter and less dense than the adjacent oceanic crust. Furthermore, hot mantle material rises beneath the ridges to fill the gap created by the spreading plates and this helps to increase their elevation. As the mantle rises it decompresses and undergoes partial melting at depths that can exceed 100 km and over a broad region of several hundred kilometres. Gabbros form within magma chambers, and magma may be intruded into dykes and may erupt at the ocean floor to form basaltic shield volcanoes and lava flows. All this contributes to form new oceanic crust. As time progresses the new oceanic crust moves away from the spreading centre, cools, contracts and subsides. The spreading rates vary from a few millimetres per annum in the Gulf of Aden to 10 mm a\(^{-1}\) in the North Atlantic near Iceland and 60 mm a\(^{-1}\) for the East Pacific Rise, although the rates may vary over the duration of the ocean ridge’s history (Reading and Mitchell, 2000).

Ridges with slow spreading rates have a well-defined (1.5–3 km deep) symmetrical axial rift valley. In contrast, the fastest spreading ridges have subdued topography more reminiscent of Hawaiian volcanoes, with a small summit ridge or graben (Macdonald, 1982). Well-developed axial valleys may drop to depths below that of the surrounding ocean floor. Hydrothermal activity is associated with ridges producing extremely hot springs that may form columnar structures known as chimneys.

Ocean ridges are broken into segments by transverse fractures (transform faults) which displace the ridges by tens, or even hundreds, of kilometres (Figure 2.1). These transform faults are sub-vertical and may produce fault scarps that exceed 500 m in height (Collette, 1986). Complex stress patterns are associated with the transform faults and transpressional and transtensional zones are common. Such stresses help to produce landforms analogous to those seen along continental strike-slip faults and include pressure ridges, pull-apart basins and shutter ridges.

The coincidence of the Icelandic hotspot with the mid-Atlantic ridge, that helped produce Iceland,
provides an opportunity to examine some of the geologic aspects of oceanic ridges above sea level. However, the evolution of the ocean ridge at this location clearly differs from true oceanic ridges. This is because, for much of its history, it evolved by the successive subaerial and subglacial eruptions and a considerable portion of its uplift history and rifting is related to the hotspot (Gudmundsson, 2000).

As a consequence of the spreading, oceanic ridges are geologically young. Even with the slowest spreading rates, the rocks that comprise them are rarely more than a few tens of millions of years old. Nevertheless, they are among some of the world’s most impressive geomorphic and tectonic features.

7 Conclusions

The above descriptions of the global mountain systems help illustrate their complex history, structure and morphology. Strong contrasts exist between global mountain systems that develop along mid-oceanic ridges, continental–continental collision zones and oceanic–oceanic/continental convergence zones. Furthermore, there is considerable variability within a single mountain system along any one plate boundary setting. This is really well illustrated along the Circum-Pacific and Alpine–Himalayan–Tibetan orogenic systems. Despite this, global mountain systems share a number of similar characteristics, both in their evolutionary path and the resultant forms. These are summarized in Figure 2.2(A) and Tables 2.1 and 2.2.

The evolution of individual mountain ranges may be in excess of hundreds of millions of years. Moreover, most Cenozoic mountain belts began their evolution long before the onset of the Cenozoic. Most orogenic belts grow outwards from a central core and may be diachronous along their lengths. Furthermore, uplift is not simple. It may propagate through a mountain system as the orogen evolves. In addition, as mountains grow in height, the denudation increases as a consequence of steeper slopes, increased river power and more prevalent mass movement, and possibly as a result of glaciation. High denudation rates may, in turn, contribute to uplift as a result of denudational unloading. The transfer of sediment to foreland regions may also contribute to uplift because of crustal flexuring associated with basin subsidence.

The growth of mountain ranges may also affect local, regional and even global climatic conditions. This, in turn, affects the rates and magnitudes of Earth surface processes that help shape the evolving orogen. This complex interaction between tectonic processes, climate and geomorphology needs quantifying to fully understand the links and interactions, and hence the evolution of global mountain systems. Fortunately, new analytical and computational methods and techniques are beginning to be applied to help explore and examine orogenic systems. Furthermore, much can be learned by applying space–time substitutions and by comparing ancient and modern mountain belts using tectonic, geomorphic and palaeoclimatological techniques. This is useful in helping to provide a fuller picture of the evolution of mountain belts and an understanding of their dynamics. It is encouraging that the study of orogenesis is becoming increasingly multidisciplinary, allowing for a better understanding of ancient and modern mountain systems. Such knowledge is also essential for sustainable development and hazard mitigation in mountain regions, especially as these regions become more populated, exploited and utilized by the world’s growing population (cf. Hewitt, this volume).

Acknowledgements

I would like to thank Phil Owens, Mike Searle and Brian Whalley for very useful and constructive comments on an earlier version of this chapter.
References

Wang, M., Shen, Z.K., Jackson, D., Yin, A., Li, Y., Zhao, C., Dong, D. and Fang, P., 1999. GPS-derived deformation along the northern rim of the Tibetan Plateau and southern Tarim basin. EOS, Transactions of the American Geophysical Union, 80: F1009.

