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2
Cenozoic evolution of global mountain
systems

Lewis A. Owen

1 Introduction
Mountain systems are among the most prominent geomorphic features on the Earth. Tectonically,
they are major belts of pervasive deformation that include thick sequences of shallow-water sand-
stones, limestones and shales deposited on continental crust, and oceanic deposits characterized by
deep-water turbidites and pelagic sediments, commonly with volcaniclastic sediments and volcanic
rocks. Typically, mountain systems have been deformed and metamorphosed to varying degrees and
intruded by plutonic rocks, chiefly of granitic affinity (Moores and Twiss, 1995).

The geologic evolution of these orogenic belts is complex and may span hundreds of millions of
years. During the latter part of the twentieth century the application of plate tectonic theories to the
study of orogenic belts revolutionized the understanding of the dynamics and evolution of these
systems. Furthermore, the rapid development of geophysical and geochemical techniques has aided
the measurement, monitoring and modelling of the evolution of mountain systems on local, regional
and global scales. Contemporary research on the evolution of mountain systems involves most
branches of geology, particularly geodesy, geophysics, geochemistry, structural geology, sedimentology,
stratigraphy, geomorphology and palaeoclimatology (Zeitler et al., 2001; Bishop et al., 2002).

A casual comparison of topographic and tectonic maps of the world clearly shows that the major high
mountain systems occur along or are parallel to lithospheric plate boundaries (Figure 2.1). The majority
of these mountain systems began to form and largely evolved during the Cenozoic (�65 Ma to
present). These are commonly referred to as ‘young’ mountain systems and ‘active’ if they are presently
deforming. Of particular note are the Alpine–Himalayan–Tibetan and the Circum-Pacific orogenic
systems, and the ocean ridges. Closer inspection reveals regionally extensive and significant mountain
belts of lesser relief. These ‘ancient’ mountain systems generally have little or no relationship to the
present lithospheric plate boundaries and may have begun to have formed many hundreds of millions
of years ago. Despite their age and distance from plate margins these mountain systems may still expe-
rience deformation, albeit not so dramatic as young active mountain belts. Often their major pervasive
geologic structures are zones of discontinuity along which earthquakes may occur. The
Appalachian–Caledonide system is one of the best examples. This mountain system stretched for some
6000 km and now includes the Caledonides of east Greenland, Svalbard, Ireland, Britain and Scandinavia,
the Appalachians of the USA and Canada, the Innuitian Mountains of Arctic Canada and Greenland, the
Ouachita Mountains of south-central USA, the Cordillera Oriental in Mexico, the Venezuelan Andes
and the West African fold belt. The evolution of this mountain system began in the late Precambrian
(��570 Ma), and the deformation and mountain building occurred during three major orogenies,
during the early, middle and late Palaeozoic (between �570 Ma and �250 Ma). The mountain system
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was subsequently broken up with the opening of the Atlantic and is extensively covered by Mesozoic
(�250 Ma to �65 Ma) continental margins and the Atlantic Ocean. Nevertheless, its remains still con-
stitute impressive mountain ranges.

The study of young active mountain systems provides knowledge and understanding of the dynam-
ics of mountain building that may be used to understand contemporary and ancient systems, and can
aid in effective management and hazard mitigation in mountainous regions. The aim of this chapter is
to provide a framework for understanding the evolution of Cenozoic mountain systems that can be
applied to help explain contemporary landscapes and the evolution of ancient and young orogens.
Particular emphasis is placed on the Alpine–Himalayan–Tibetan orogen that constitutes part of the
highest and greatest mountain mass on Earth and is hence one of the best natural laboratories to
study the nature and dynamics of orogenic processes.
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Figure 2.1 The distribution of mountain systems showing their relationship to plate boundaries and tectonic settings

Adapted from Uyeda (1978),Vogt (1981) and Summerfield (1991a).
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2 Geographic extent of global mountain belts
The association of young active mountains with plate boundaries reveals that major mountain systems
occur in three main tectonic settings: continental–continental collision zones; subduction related set-
tings (oceanic–oceanic and continental–oceanic collision zones); and oceanic spreading ridges. Other
young mountains, however, are associated with transform plate boundaries, hotspots, rift systems and
passive margins.

The longest mountain system is associated with the oceanic spreading ridges and extends for
�40000 km (Figure 2.1). Although these mountains may rise in elevation by �5 km from the ocean
floors, they only occur above sea level where an oceanic spreading ridge astrides a hotspot. The
Icelandic hotspot that is broadly coincident with the mid-Atlantic ridge and helps to form Iceland pro-
vides a contemporary example (Gudmundsson, 2000).

The largest mountain mass on Earth, however, is the Alpine–Himalayan–Tibetan system. This
stretches from the Betic Mountains in Southern Spain through the European Alps, the Turkish–Iranian
Plateau, the Zagros Mountains, the Himalaya, the Tibetan Plateau, to the Sumatra arc of Indonesia and
is some 7000 km long and exceeds 2000 km at its widest part (Figure 2.1). Mountain ranges such as
the Tien Shan and Gobi Altai Mountains are also part of this orogen. These mountains are associated
with the collision of the African and Indian continental lithospheric plates with the Eurasian continen-
tal lithospheric plate.

The Circum-Pacific oceanic–oceanic and continental–oceanic collision zones constitute the next
major mountain systems of note. These include the Antarctic Peninsula, Andes, Western Cordillera of
North America, and the volcanic island arcs of the Aleutians through to Japan and the Philippines and
on to New Guinea (Figure 2.1).

Mountain systems that are associated with other tectonic settings and include transform plate
boundaries, passive margins and hotspots are not really of continental/global scale but are impressive
topographic features (Figure 2.1). These include the Alps of New Zealand, which provide one of the
best examples of a mountain system associated with a transform plate boundary. This is the result of
the relative motion between the Antarctic, Indian–Australian and Pacific plates (Tippett and Hovius,
2000; Williams, this volume). The Transverse Ranges of Southern California within the San
Andreas–Gulf of California transform system provide another example of a mountain system within a
transform plate boundary (Cox et al., 2003). These essentially form within the double bend of the San
Andreas fault system and they rise from a few hundred metres to 3500 m above sea level (asl) within
little more than 10 km.

The Western Ghats of India and Drakensberg Mountains of South Africa are impressive examples of
mountain ranges that have formed along passive margins (cf. Ollier, this volume). These are thought to
be the result of uplift due to denudational unloading and isostatic flexuring as the adjacent plateau
regions are eroded along their margins (Gilchrist and Summerfield, 1990, 1994; Summerfield, 1991a, b;
Brown et al., 2000; Gunnell and Fleitout, 2000).

Mountains produced by hotspots are a consequence of regional warping and associated volcanism
and rifting. The Grand Tetons in Wyoming provide a spectacular example of uplift along a rifted
margin associated with a hotspot, in this case related to the Yellowstone hotspot (Love and Reed,
1971; Pierce and Morgan, 1992). The Hawaiian Islands–Emperor Seamount chain provide an example
of volcanic mountains that have grown over the Hawaiian hotspot as the Pacific plate has moved pro-
gressively northwestwards and then westwards over time. However, such mountains subside as they
are tectonically transported away from the hotspot and as their mass increases and causes isostatic
subsidence (Watts and ten Brink, 1989).
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3 Characteristics of Cenozoic mountain belts
The greatest mountain systems traverse many climatic belts. As a consequence they include along
their length nearly every environmental and geomorphic setting. For example, they may include trop-
ical rainforest, deciduous forest, alpine meadows, tundra, desert and glacial environments (Troll,
1973a, b). Since most Cenozoic mountains exceed 5000 m asl, they are extensively glacierized. They
commonly have a precipitation gradient across their ranges and rainshadows on their leeward slopes.
The steep slopes and glacierized catchments result in high river discharges and extensive landsliding.

The geomorphic processes within these environments play a major role in shaping the landscapes.
Furthermore, it is becoming increasingly apparent that denudation influences the tectonism in these
regions by such processes as denudational unloading and basin subsidence resulting from the thick
piles of sediments that are deposited in the forelands (Montgomery, 1994; Gilchrist et al., 1994;
Shroder and Bishop, 2000; Bishop et al., 2002).

Dramatic climatic changes have taken place throughout the Cenozoic, and particularly throughout
the Quaternary. This has caused major fluctuations in the magnitude and frequency of Earth surface
processes in mountain regions. Moreover, the mountain uplift may have also contributed to climate
change throughout the Cenozoic by affecting global atmospheric circulation, deflecting jetstreams, ini-
tiating and enhancing monsoons and altering biogeochemical cycles (Ruddiman and Kutzbach, 1989;
Raymo and Ruddiman, 1992; Ruddiman, 1997, 1998; Ramstein et al., 1997). Such are the links and
feedbacks between tectonism, climate, Earth surface processes and biology that research in the evo-
lution of Cenozoic mountain systems is becoming increasingly multidisciplinary.

Despite the variety of tectonic and geomorphic settings for mountain systems, the two largest sub-
aerial mountain systems, the Alpine–Himalayan–Tibetan and the Circum-Pacific systems, have a
number of similarities in their evolution and geologic characteristics. In the mature stages of the
orogen, the mountain system may be broadly divided into geologic and topographic belts. These are
illustrated in Figure 2.2(A) and include:

1 an outer foredeep or foreland basin;
2 a foreland fold-and-thrust belt;
3 a crystalline core complex that includes: sedimentary rocks and their basement; volcanic and

igneous rocks and associated sediments; metamorphosed ocean crust (ophiolites); gneissic ter-
ranes with abundant ultramafic bodies; and granitic batholiths;

4 rectilinear (high-angle) fault zones.

The Himalayan–Tibetan region illustrates this well. It exhibits all these belts, although they are devel-
oped to varying degrees along different transects of the orogen (Figure 2.2(B)–(D)).

Geologic observations of orogenic belts suggest that a sequence of events occurs as part of an oro-
genic cycle (Moores and Twiss, 1995). These events are summarized in Table 2.1. Dilek and Moores
(1999) illustrate some of these similarities in their comparative study of the early Tertiary Western
United States Cordillera and the modern Tibetan and Turkish–Iranian Plateau. They stressed that, as
a consequence of an orogenic belt becoming overthickened, the mountains become the loci of lithos-
pheric extension and experience tectonic collapse during their late-stage post-collisional evolution. It
follows that the hinterland of major orogenic belts share a common taphrogenic (rifting) evolutionary
path. This is related to rapid increase in the geothermal gradient and thus rapid isobaric heating, pro-
grade high-temperature metamorphism, intrusion of post-tectonic granites and the extrusion of ign-
imbrites and associated minor extension. This phase is commonly followed by a further increase in the
geothermal gradient, accelerated lithospheric extension and thinning with erosional denudation,
superposition of high-temperature/low-pressure metamorphic assemblages, mantle partial melting
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Figure 2.2 Comparison of selected cross-sections across the Himalayan–Tibetan orogenic belt with a schematic cross-section
across a model composite orogenic belt. (A) Model composite orogenic belt showing the major structures and tectonic components
(adapted from Hatcher and Williams, 1986, and Moores and Twiss, 1995). Schematic sections across (B) the Himalaya,Tibet and
Qilian Shan from Nepal to the Hexi Corridor (after Yin and Harrison, 2000); (C) the western Himalaya and central Karakoram (after
Searle, 1991); and (D) the Himalaya, Kohistan and Pamir (adapted from Mattauer, 1986). Figure 2.5 shows the locations of sections
(B), (C) and (D). GCT, Greater Counter Thrust; GT, Gangdese Thrust; ISZ, Indus Suture Zone; K2T, K2 Thrust; KBL, Karakoram Batholith
Lineament; MBT, Main Boundary Thrust; MCT, Main Central Thrust; MKT, Main Karakoram Thrust; MMT, Main Mantle Thrust; PPT, Pir
Panjal Thrust; STDS, South Tibet Detachment System; SSZ, Shyok Suture Zone;VKT,Vale of Kashmir Thrust; XF, Xianshuihe Fault; ZSZ,
Zanskar Shear Zone.The Moho marks the boundary between the crust and the mantle
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and mafic magmatism, and rapid subsidence and deposition of nonmarine sediments. This sequence
of events and the similarity of tectonic structures for the Tibetan Plateau and Himalaya,
Turkish–Iranian Plateau, and Western US Cordillera and Great Basin are summarized in Table 2.2 and
Figure 2.3. In Figure 2.3(C) it should be noted that the North American craton is underplating the
Sevier thrust belt and the overall morphology and tectonics of the high plateau and the Great Basin
are analogous to the Tibetan Plateau and Turkish–Iranian Plateau. Furthermore, the Great Basin,
Himalayan–Tibetan and Turkish–Iranian plateaux all adjoin a suture zone (union of lithospheric scale
units), where continental apposition occurred and where major shortening and imbrication took place
resulting in crustal overthickening and surface uplift.

Clearly, these observations and sequence of events are somewhat simplistic and the evolution of
each individual orogen varies spatially and temporally. This model, however, does provide a working
framework to help understand the evolution of Cenozoic and ancient mountain systems. Some of
these differences and the detailed evolution of several of the major mountain ranges will now be dis-
cussed in more detail.

4 Alpine–Himalayan–Tibetan orogenic belt
The Alpine–Himalayan–Tibetan orogenic belt incorporates the Betic Mountains, European Alps,
Zagros, Himalaya, Trans-Himalaya, Tibetan Plateau and its ranges, Tien Shan and the Gobi Altai.
Several major zones of continental–continental collision are evident along its length and these include:
the Alps (African–European collision); the Turkish–Iranian Plateau (Arabian–Asian collision); and the
Himalayan–Tibetan orogen (Indian–Asian collision) (Figure 2.1). These major zones of convergence,
for most of the orogen, are shown in Figure 2.3(C). Until the beginning of the 1980s little attention
had been given to the orogen outside of the Alps. This was mainly due to political and logistical prob-
lems. However, during the last two decades considerable efforts have been made to study the evolu-
tion of Tibet and its bordering mountains. Unfortunately, studies of the Turkish–Iranian Plateau are still
few because of the difficulties of fieldwork in this politically sensitive part of the world.

Some of the first orogenic studies were undertaken in the European Alps and their influence still
persists in modern geology (Hsu, 1995). For example, the concept of fold nappes (sheet-like units of
deformed rock that have moved on a predominant horizontal surface as a result of thrust faulting,
recumbent folding or both mechanisms) was first introduced in 1841 by an Alpine geologist, Escher
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Table 2.1 – Sequence of events in an orogenic cycle

1 Accumulation in separate areas of thick deposits of both shallow-water and deep-water marine sediments,

the latter in association with intrusions or extrusions of mafic or intermediate magmatic rocks

2 Commencement of deformation in the foreland fold-and-thrust belt together with the emplacement of

ophiolitic rocks and the subsequent isostatic rise of the ophiolite and the deformed sediments beneath it

3 Continued deformation in the fold-and-thrust belt – and metamorphism, deformation, and intrusion of

granitic batholiths in the core zone – together with deposition of synorogenic sediments

4 Further isostatic rise of the orogenic region and the deposition and partial deformation of post-orogenic

continental sediments in the outer foredeep

5 Block faulting, the development of fault-bounded basins, and the intrusion of scattered alkalic dykes and

intrusive bodies

Source: Moores and Twiss (1995).
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van der Linth (Ryan, 2000). Despite the Alps being the most studied of all orogenic belts, its history
has still to be fully understood because of its complex evolution involving a combination of subduc-
tion of Mesozoic oceanic crust, ophiolite emplacement, back-arc spreading, volcanism, metamor-
phism, thrusting and nappe emplacement, denudation and foreland basin sedimentation.

The Alpine sector of the Alpine–Himalayan orogenic belt is extensive, stretching from Gibraltar to
Turkey, and includes the Betic Mountains, European Alps, Dinarides, Hellenides and Carpathians, while
the Turkish–Iranian sector includes the Turkish–Iranian and Zagros Mountains (Figures 2.3 and 2.4(A)).
The Alpine–Iranian belt developed on late Palaeozoic Hercynian (�345–225 Ma) and late
Proterozoic–early Palaeozoic Pan-African (�800–500 Ma) orogenic belts as the continental plates of
Africa and Arabia advanced into the Eurasian continental plate. The movement of Africa and Arabia into
Eurasia is the consequence of the opening of the Atlantic and Indian Oceans. The convergence history is
therefore complex and this has resulted in an orogen that varies considerably along its length. It has also
resulted in abrupt curves and large changes in the strike of fold-and-thrust belts along its length. Bends
of 90° to 180°, for example, characterize the Gibraltar region, the Alps, the Carpathians and the
Balkanides. These bends, together with the complex fold-and-thrust vergences, suggest that considerable
rotation and/or strike-slip deformation must have taken place. Furthermore, as illustrated in Figure 2.4(B),
the orogen is more complex than the simple bilateral model shown in Figure 2.2(A). This section through
the Swiss Alps shows two outward-directed thrust sequences on either side of a metamorphic core,
associated with an apparent offset of the Moho (the Mohorovičić Discontinuity, which marks the bound-
ary between the crust and mantle). In comparison, the orogen is more symmetrical in the Dinarides and
the Carpathians where thrusts verge in opposite directions away from the volcanic rich Pannonian Basin
(Figure 2.4(A)). Similarly in Turkey, the Tauride and Pontide thrust complexes bound either side of a
central core of deformed and metamorphosed rock and younger volcanic rock that underlie the central
Anatolian Plateau (Moores and Twiss, 1995).
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Figure 2.3 Simplified tectonic maps of the (A) Alpine–Himalayan–Tibetan orogenic belt and (B) the Western US Cordillera showing
areas of high elevation (�2000 m asl), extensional orogenic collapse, and plate convergence. (C) Simplified tectonic maps of the
Himalaya–Tibet,Turkish–Iranian Plateau, and the pre-Basin and Range Western US Cordillera at the same scale.The plate
boundaries, geometry of the collision zones, and the direction of relative plate motion are shown. Large arrows show the direction of
relative plate motion
Adapted from Dilek and Moores (1999).
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No one model explains the tectonic evolution of the whole of the Alpine–Iranian sector.
Nevertheless, much of the alpine sector can be explained by developing a model that involves the for-
mation and deformation of island arcs and associated basins, and the collision of a microcontinent
(Penninic) with the Apulia (eastern Italy, the Ionian Sea, Slovenia, Croatia, Bosnia, Albania,
Montenegro, Greece and western Turkey), and ultimately Europe (Roeder, 1977). Simplified, the
Alpine sector really began to form in the middle Cretaceous (�120 Ma) with the subduction of the
southern ocean basin beneath an island arc that was separated from the passive margin of the Apulian
terrane by a marginal basin. This was followed (� 110 Ma) by the collision of the Penninic microcon-
tinent and deformation of the overriding island arc and marginal basin. During the late Cretaceous
(�90 Ma), the Apulian continental margin overrode the marginal basin intensifying the collision zone.
Following this, the northern basin closed as it was subducted under an arc separated from the rifted
passive margin (Helvetic miogeocline) by a back-arc basin. The southern continental mass collided and
overrode the northern continental mass deforming the arc, back-arc basin and Helvetic miogeocline
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Figure 2.4 Characteristics of the Alpine–Mediterranean sector of the Alpine–Himalayan orogenic belt. (A) Simplified geologic map
showing the main structural features (adapted from Dewey et al., 1973, and Moores and Twiss, 1995). (B) Cross-section through the
Swiss Alps showing recumbent nappes and root fold in the crystalline core zone of the Alps (after Laubscher, 1982)
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during the early Miocene (�20 Ma). Since the late Neogene (5–0 Ma) there has been continued con-
vergence and shortening resulting in nappe emplacement and backfolding (Roeder, 1977; Moores and
Twiss, 1995).

Although the Himalayan–Tibetan orogen is commonly considered to be one of the youngest
mountain belts, its history spans far beyond the beginning of the Cenozoic. Initially, throughout the
early Palaeozoic, this involved the sequential accretion of microcontinents and island arcs onto the
southern margin of Eurasia (Hsu et al., 1995; Sengor and Natal’in, 1996). This was followed by the col-
lision of the Indian continental lithospheric plate with the Eurasia continental lithospheric plate
between 50 and 70 Ma (Yin and Harrison, 2000). During the past 40–50 Ma the Indian plate has been
moving at a nearly constant rate of �50 mm a�1 northward with respect to stable Eurasia, resulting
in between 1400 and 2000 km of crustal shortening (Molnar and Tapponnier, 1975; Patriat and
Achache, 1984; DeMets et al., 1994). Ultimately, this led to the formation of the present Tibetan
Plateau and the adjacent mountains. The collision of India into Asia helped to rejuvenate the Tien Shan
orogen and has affected regions as far north as the Gobi Altai Mountains and Baikal rift, and may have
played a role in the opening of the South China Sea (Molnar and Tapponnier, 1975, 1978; Tapponier
et al., 1986; Hendix et al., 1994; Abdrakhmatov et al., 1996; Cunningham et al., 1996).

The region is, seismically, one of the most active in the world (Holt et al., 1995; Chen and Kao, 1996;
Chen et al., 1999). The partitioning of the post-collisional crustal shortening is complex and is essen-
tially divided between crustal thickening and lateral extrusion along strike-slip fault systems (Avouac
and Tapponier, 1993; Houseman and England, 1996). Estimating the post-collisional shortening is dif-
ficult because of the uncertainty associated with estimating the initial crustal thickness before the
Indian–Asian collision and because the shortening is distributed beyond the Himalayan–Tibetan
region, with a substantial amount occurring in the Tien Shan (Murphy et al., 1997). Yin and Harrison
(2000) suggest that the shortening since the Indian–Asian collision is distributed as follows: �360 km
across the Himalaya, �60 km across the Gangdese thrust system, �250 km along the
Shiquanhe–Gaize–Amdo thrust system, �60–80 km across the Fenghuo Shan–Nangqian fold-and-
thrust belt, �270 km across the Qimen Tagh–North Kunlun thrust system, and �360 km across the
Nan Shan thrust belt. Furthermore, they suggest that the shortening is expressed in two modes at the
surface: (a) discrete thrust belts with relatively narrow zones of contraction or regional décollement
(a detachment structure resulting from deformation), and (b) distributed shortening over a wide
region involving basement rocks.

A compilation of the rates of shortening and strike-slip faulting on Holocene and late Pleistocene
timescales is summarized in Figure 2.5. These data are based on measuring and dating offset landforms
and displaced outcrops. The current rate of deformation is beginning to be quantified by Global
Positioning System (GPS) measurements (King et al., 1997; Larson et al., 1999; Wang et al., 1999;
Chen et al., 2000). These studies show relatively good agreement with the geologic data, yet they are
somewhat limited by the short duration over which the measurements have been undertaken.

Numerous models have been constructed to help understand the geodynamics of the Indian–
Asian collision and they involve numerical simulation of indentation of a viscous thin-sheet (England
and McKenzie, 1982; Vilotte et al., 1982; England and Houseman, 1989; Ellis, 1996; Yang and Lui,
2000), analogue models of indentation of a plasticine plane (Tapponnier and Molnar, 1976; Tapponnier
et al., 1986; Peltzer and Tapponnier, 1988) and three-dimensional (3-D) finite element modelling (Lui
et al., 2000). Such modelling studies add to the knowledge and understanding of the deep structure
of the Himalayan–Tibetan orogen and they complement the deep crustal research (Nelson et al.,
1996; Owens and Zandt, 1997).

The timing of the Tibetan plateau uplift has been difficult to quantify because of the uncertainty in
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determining palaeoaltitudes (cf. Gregory and Chase, 1992). Several uplift patterns have been pro-
posed (Harrison et al., 1992, 1998), but recent geologic data suggest that the initiation and rates of
uplift varied considerably across the orogen (Chung et al., 1998). Furthermore, Murphy et al. (1997)
suggested that a significant portion of southern Tibet was elevated before the Indian–Asian collision
and Chung et al. (1998) suggested that northeastern Tibet had uplifted by 40 Ma, while in western
Tibet the uplift occurred at about 20 Ma. These observations are consistent with sedimentation
records from the Ganges–Brahmaputra delta and the Bengal fan (Chung et al., 1998). The uplift
history also helps to explain the nature of the strontium isotope evolution of the oceans and global
cooling over the past 20 Ma (Chung et al., 1998).

By about 14 Ma, the Tibetan Plateau had become sufficiently thick that it began to extend gravita-
tionally (Coleman and Hodges, 1995). Two types of extensional structures are apparent: the south
Tibetan fault system, a family of east-striking shallow to moderate north-dipping normal faults
exposed near the crest of the Himalaya from Bhutan to northwest India; and numerous north-
trending rift systems that largely dictate the topographic pattern of the southern Tibetan Plateau
(Armijo et al., 1986; Wu et al., 1998; Yin et al., 1999; Yin, 2000; Blisniuk et al., 2001; Hurtado et al.,
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Figure 2.5 Digital elevation model of Tibet and the bordering mountains showing the major faults and sutures. Estimates of late
Quaternary strike-slip, convergence and extension rates are shown in millimetres per annum (after Larson et al.’s (1999)
compilation of recent data).The sections B, C and D are shown in Figure 2.2. AF,Altai fault; AKMS,Ayimaqin–Kunlun–Mutztagh
suture;ASRR,Ailao Shan-Red River shear zone;ATF,Altyn Tagh fault; BNS, Bangong Nujiang suture; GTFS, Gobi–Tien Shan fault system;
HF, Haiyuan fault; ITS, Indus Tsangpo suture; JHF, Junggar Hegen fault; JS, Jinsha suture; KF, Karakoram fault; KJFZ, Karakoram Jiali fault
zone; KLF, Kunlun fault; KS, Kudi suture; LSF, Longmen Shan fault; MBT, Main Boundary Thrust; MCT, Main Central Thrust; MKT, Main
Karakoram Thrust (Shyok suture zone); MMT, Main Mantle Thrust; NGF, North Gobi fault; NQS, North Qilian suture; NTSF, North Tien
Shan fault; STSF, South Tien Shan fault;TFF,Talus–Fergana fault; XF, Xianshuihe Fault
Adapted from Searle (1991); Cunningham et al. (1996); Chung et al. (1998);Yin et al. (1999);Yin and Harrison (2000); Blisniuk et
al. (2001); Hurtado et al. (2001).
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2001). These structures are summarized on Figure 2.5 and the relationship to the evolution of the
Himalayan–Tibetan orogen is reviewed in Table 2.2 and Figure 2.2.

The uplift and subsequent denudation of the Himalayan–Tibetan orogen resulted in a varied topog-
raphy and geology. This is summarized in Figures 2.2 and 2.5. Several pervasive structures are present
along the length of the Himalaya. These include: the Main Boundary Thrust that delimits the southern
margin of the Himalaya; the Main Central Thrust that forms a major crustal suture zone within the
Indian plate; and the Main Mantle Thrust (Indus Tsangpo Suture) that marks the main boundary
between the Indian and Asian continental plates. Other major thrusts and sutures are present, but
they are not so regionally pervasive; they include the K2 Thrust, Karakoram Batholith Lineament, Pir
Panjal Thrust and the Vale of Kashmir Thrust. Several major sutures traverse Tibet and include the
Bangong Nujiang, Jinsha and Ayimaqin–Kunlun–Mutztagh sutures, which started to form during the
Palaeozoic. In addition, continental-scale strike-slip fault systems transverse Tibet and include the
Karakoram, Altyn Tagh and Kunlun faults, and the Ailao Shan–Red River Shear Zone. These are con-
sidered to be important in allowing the regional shortening to be accommodated as eastward lateral
extrusion (Tapponnier and Molnar, 1976). For example, the total slip along the Altyn Tagh fault during
the Cenozoic probably exceeds 600 km (Yin and Harrison, 2000) and along the Karakoram fault it is
�100 km (Searle and Owen, 1999). The Altyn Tagh and Karakoram faults act as major transfer faults
linking major thrust belts and extensional systems, respectively (Figure 2.5).

The Trans-Himalayan Batholith is an important component of the Himalayan orogen. It is discontin-
uous along the entire length of the Trans-Himalaya, some 2500 km. Along the eastern stretch it occurs
north of the Indus–Tsangpo suture and it was emplaced into an Andean-type margin during the mid-
Cretaceous and in the Palaeocene–lower Eocene (England and Searle, 1986; Debon et al., 1986). In
the west, in northern India and Pakistan, it forms the Kohistan–Ladakh arc. This was an island arc that
grew on the northern side of the Neo-Tethys Ocean that separated India from Eurasia during the mid-
Cretaceous. The arc collided with the Karakoram plate at between 102 and 85 Ma to become the
leading edge of an active continental margin under which the Neo-Tethys was subducted (Petterson
and Windley, 1985; Coward et al., 1987; Reuber, 1989) (Figures 2.2(C) and 2.2(D)). This arc was
intruded by an Andean-type granodiorite batholith between 78 and 75 Ma, and 48 and 45 Ma (Sullivan
et al., 1993). The Indian plate eventually collided with the arc during the earliest Eocene and the con-
tinuous underthrusting of the Indian plate below the arc led to crustal thickening and melting and the
intrusion of leucogranites at �30 Ma and subsequent deformation (Petterson and Windley, 1985).

The occurrence of syn-collisional igneous activity is an important characteristic of the
Himalayan–Tibetan orogen (Figure 2.2(B)–(D); Table 2.2). Yin and Harrison (2000) listed five different
mechanisms that may have been responsible for the generation of syn-collisional igneous activity. These
are: (i) an early crustal thickening followed by slip along a shallow dipping décollement (Himalayan
leucogranites); (ii) slab break-off during the early stage of the Indian–Asian collision (Linzizong volcanic
sequence in southern Tibet); (iii) continental subduction in southern and central Tibet, which gener-
ated calcalkaline magmatism; (iv) formation of releasing bends and pull-apart structures that serve both
as a possible mechanism to generate decompressional melting and as conduits to trap melts (Pulu
basalts and other late Neogene–Quaternary volcanic flows along the Altyn Tagh and the Kunlun faults);
(v) viscous dissipation in the upper mantle and subduction of Tethyan flysch complexes to mantle
depths may be the fundamental cause of widespread and protracted partial melting in the
Himalayan–Tibetan orogen in the Cenozoic.

The presence of calcalkaline type volcanism in southern and central Tibet suggests that some
portion of the continental crusts from both the north and south must have been subducted into the
mantle beneath Tibet (Yin and Harrison, 2000).
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The role of denudation in shaping the Himalayan–Tibetan region is a subject of intense debate.
Molnar and England (1990), for example, hypothesized that Cenozoic climatic change would have
increased glaciation throughout the Himalaya and this, and its associated processes, would have
increased erosion creating deeply incised valleys. They argued that high isolated mountain peaks
would have been isostatically uplifted because of the denudation unloading caused by the deep valley
incision. This helps increase the maximum elevation of the mountains. Others argue that the geome-
try of the valleys and the erosion rates are not significant to allow such uplift to occur (Harbor and
Warburton, 1992; Whittington, 1996; Whipple and Tucker, 1999).

Zeitler et al. (2001) proposed an interesting model relating erosion, geomorphology and metamor-
phism in the Nanga Parbat Himalaya in northern Pakistan. Nanga Parbat is the ninth highest mountain
in the world and is essentially defined by the Main Mantle Thrust that forms a syntaxis around Nanga
Parbat and Haramosh massifs (Figure 2.6(A)). The core of the Nanga Parbat massif is characterized by
very young (�3 Ma) granites, low-P cordierite-bearing granulites, low seismic velocities, resistive lower
crust and shallow microearthquakes implying shallow brittle-ductile transition bowed upwards by
�3 km. Incision rates for the Indus River in this region are in the order of 2–12 mm a�1 (Burbank et
al., 1996) and tributary valley incision rates around Nanga Parbat are 22�11 mm a�1 (Shroder and
Bishop, 2000). Zeitler et al. (2001) proposed that the incision that produced the deep river gorge of
the Indus helps weaken the crust in this region. This, in turn, encourages failure and helps draw in
advective flow toward the topographic gap (Figure 2.6(B)). This builds elevation and, together with the
incising river, builds relief and leads to high erosion rates. The result is a steepened thermal gradient,
which raises the brittle-ductile transition, and further weakens the crust. Deep and mid-crustal mater-
ial can then experience decompression melting and low-P–high-T metamorphism as it is moved rapidly
to the surface. They called this process a ‘tectonic aneurysm’ and they believe that this is an important
orogenic process in continental–continental collision zones.

The study of these continental–continental collision zones provides an insight into the evolution of
the continents and helps in understanding and explaining the nature and distribution of ancient moun-
tain systems. It is necessary, however, to examine active oceanic–oceanic and oceanic–continental
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Figure 2.6 The geology of Nanga Parbat massif, northern Pakistan, illustrating the relationship between erosion, crustal processes
and uplift. (A) Geologic sketch map of the Nanga Parbat massif (after Schneider et al., 1999, and Zeitler et al., 2001). (B) Schematic
representation illustrating the dynamics of a tectonic aneurysm, shown at a mature stage (see text for explanation) (after Zeitler et
al., 2001)
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collision zones to fully understand the early evolution of continental–continental collision zones. The
Circum-Pacific orogenic belt provides such an opportunity and, ultimately, it may itself become a con-
tinental–continental collision zone in the distant future.

5 Circum-Pacific orogenic belt
The Circum-Pacific orogenic belt can be broadly divided into eastern and western sectors (Figure 2.1).
The western sector of the Circum-Pacific orogenic belt is the result of convergence of oceanic plates
including the Pacific, Philippine and Indian–Australian plates, and the eastern margin of the Eurasian
plate (Figure 2.1). This sector, however, is discontinuous and includes volcanic island arcs and arc-
collision zones. The associated mountains are not very geographically extensive, but nevertheless are
impressive in terms of their relative relief and rates of erosion.

Taiwan, the Philippines, New Guinea and the Vanuatu arc in the southeast Pacific provide the best
examples of arc–continental and arc–arc collisions. The convergence in this region is complex, with
the interaction of the Pacific, Indian–Australian, Eurasian and Philippine plates, and two major
trench–trench–trench triple junctions. Landforms include volcanic chains, fold-and-thrust belts and
accretionary wedges. Taiwan provides one of the best examples of an area of rapid mountain uplift
that is a consequence of arc–continental collision. The island rises to 3997 m asl and formed during
the past 4.5 Ma as the Philippine Sea plate moved northwest into the Eurasian continental plate at a
rate of �70 km Ma�1 (Seno, 1977; Angelier et al., 1986; Lee and Wang, 1987; Figure 2.7). Intense
internal deformation and metamorphism has resulted in tectonic uplift rates of between 1 and 10 mm
a�1 (Lin, 1991; Wang and Burnett, 1991). This uplift, together with rates of denudation of between 1
and 5 mm a�1 (Li, 1976) that are a consequence of the extreme monsoonal climate with its frequent
tropical cyclones, has resulted in one of the youngest and most dynamic landscapes on Earth.
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Figure 2.7 The geologic setting of Taiwan and its associated mountain ranges. (A) Schematic
plate tectonic setting (after Lin, 2000). (B) Major faults, and geologic and geomorphic units
(after Chang, 2000)
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The Andes chain and North American Cordillera are the two greatest mountain ranges in the
Circum-Pacific orogenic belt and stretch almost continuously for �20000 km. These constitute the
eastern sector of the Circum-Pacific orogenic belt. Their evolution is essentially the consequence of
the convergence of the oceanic and continental plates. Today this includes the collision of the Pacific,
Juan Fuca, Cocos and Nazca oceanic plates with the North and South American continental plates
(Figure 2.1). Presently, the margin is consumed beneath Alaska, the US Pacific Northwest and south-
western Canada, Central and South America, the Scotia Arc and the Antarctica Peninsula. Transform
margins are present, connecting the trenches of Alaska and the Pacific Northwest and connecting the
Mendocino triple junction to the Gulf of California, which comprises the San Andreas fault system
(Moores and Twiss, 1995). The mountains along this sector of the Circum-Pacific orogenic belt have
a long and complex history beginning in the late Precambrian. Most of the mountain building that pro-
duced the present landscapes, however, has occurred during the last 200 Ma (Figures 2.1 and 2.8).
Structures verge towards the forelands on the eastern and western sides of the mountain belts, but
there is a strong asymmetry within the orogens (Figure 2.8).

The Andean chain has been a site of continental accretion, crustal growth, and both compressional
and extensional deformation throughout the Phanerozoic. Palaeozoic subduction and accretion
resulted in the amalgamation of various terrains, associated with regional compression events (Ramos,
1988). Since the Triassic (�225 Ma) the southern Andes have formed a classic continental-type sub-
duction margin and with no further terrain accretion. The northern Andes are more complex, influ-
enced by Caribbean tectonics and the relative motion of the North and South America plates. This
resulted in the accretion of island-arcs during the latest Mesozoic and early Tertiary. During the
Jurassic and Cretaceous there was extensive rifting in fore-arc and back-arc basins, and magmatic
activity along the length of the Andes that included the emplacement of massive granite batholiths
(McCourt et al., 1984; Jaillard et al., 1990; Kay et al., 1991). Increased plate convergence occurred
during the early Cenozoic and middle to late Cenozoic resulting in major regional deformation
(Allmendinger et al., 1983; Jordan et al., 1983). During this time the eastern Andes flexed downwards
in response to deformation and crustal loading. This resulted in a series of Cenozoic foreland basins
that contain thick (�5 km) sequences of terrestrial sediments. This general pattern of events is similar
throughout the Andes, but, as illustrated in Table 2.3, the timing of orogenic events is diachronous
along the mountain belt.

Like the Andes, the North American Cordillera has a complex history of continental accretion,
crustal growth, and both compressional and extensional deformation. In addition, however, the south-
ern stretch has also experienced the development of a continental transform plate boundary. This
formed during the latter part of the Cenozoic, probably as a consequence of the subduction of the
Pacific–Farallon ridge-transform system under North America (Atwater and Molnar, 1973; Atwater,
1989) (Figure 2.8). Several belts of deformation of different ages are present throughout the orogen.
Palaeozoic deep-water rocks of the so-called ‘eugeocline’ were deformed by the Antler and Sonoma
orogenies during the Devonian–Mississippian and Permo-Triassic, respectively (Speed et al., 1988). A
phase of major deformation during the Sevier orogeny in the late Jurassic to late Cretaceous pro-
duced an extensive fold-and-thrust belt that extends from southeast California to Canada
(Allmendinger and Jordan, 1981) (Figures 2.3 and 2.8). A complex hinterland of thick Palaeozoic
shallow-water rocks of the ‘miogeosyncline’ is present east of this belt. These are involved in major
Mesozoic nappes, Tertiary low-angled denudational faulting and metamorphic core complexes of
Mesozoic and Tertiary age (Dilek and Moores, 1999). The easternmost segment of the North
American Cordillera was deformed during the Cretaceous–Tertiary Laramide orogeny. This involves
Precambrian crystalline crust and Palaeozoic–Mesozoic platform sedimentary rocks (Hamilton, 1988).
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Figure 2.8 Geologic characteristics of the North American Cordillera and Andes showing the major tectonic features. The Andes are
divided into seven segments (A to G) and their geologic history is summarized in Table 2.3
After King (1977), Megard (1989), Mpodozis and Ramos (1989) and Moores and Twiss (1995), and the geologic cross-sections are
adapted from Moores and Twiss (1995), after Maxwell (1974), Roeder and Mull (1978), Csejtey et al. (1982), Potter et al. (1986),
Allmendinger et al. (1987), Roeder (1988), Mpodozis and Ramos (1989) and Vicente (1989).
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The prolonged Mesozoic orogeny produced a north-trending crustal high that had a maximum thick-
ness of about 60 km and an elevation of �3 km (Wolfe et al., 1997). By the mid-Tertiary, this high-
land region had begun to undergo orogenic extension resulting in the exhumation of metamorphic
cores and widespread calcalkaline volcanism. The early stage of orogenic collapse was followed by the
Basin and Range extension at between 18 and 16 Ma and associated volcanism (Coney, 1987). This
ultimately produced the Great Basin with a mean elevation of �1.5 km asl and a crustal thickness of
�30 km (Thompson and Burke, 1974; Wolfe et al., 1997). The succession of events that is important
in producing the present orogen is summarized in Table 2.2 and discussed above in comparison with
the Tibetan Plateau and the Turkish–Iranian Plateau.

The mountains of the Circum-Pacific orogenic belt help illustrate the variety of tectonic settings that
can produce substantial relief along different types of convergent and transform plate boundaries.
Furthermore, they provide valuable models for understanding the orogenic evolution of orogens that
ultimately become continental–continental collision zones such as the Alpine–Himalayan–Tibetan
orogen.

6 Ocean ridges
As a type of global mountain system, oceanic ridges are commonly neglected. This is probably
because they are the least well studied owing to their inaccessibility. Ocean ridges occur in mid-ocean
settings associated with divergent oceanic plates and back-arc spreading centres behind volcanic arcs
of subduction zones. Mid-ocean ridges are between 1000 and 4000 km wide, they rise 2–3 km above
the surrounding ocean floors and their crests have an average depth of 2500 m below sea level
(Nicholas, 1995) (Figure 2.1). Back-arc spreading centres are considerably smaller than the mid-
oceanic ridges and therefore little attention is given to them in this section.

Oceanic ridges are elevated because they consist of rock that is hotter and less dense than the adja-
cent oceanic crust. Furthermore, hot mantle material rises beneath the ridges to fill the gap created
by the spreading plates and this helps to increase their elevation. As the mantle rises it decompresses
and undergoes partial melting at depths that can exceed 100 km and over a broad region of several
hundred kilometres. Gabbros form within magma chambers, and magma may be intruded into dykes
and may erupt at the ocean floor to form basaltic shield volcanoes and lava flows. All this contributes
to form new oceanic crust. As time progresses the new oceanic crust moves away from the spread-
ing centre, cools, contracts and subsides. The spreading rates vary from a few millimetres per annum
in the Gulf of Aden to 10 mm a�1 in the North Atlantic near Iceland and 60 mm a�1 for the East
Pacific Rise, although the rates may vary over the duration of the ocean ridge’s history (Reading and
Mitchell, 2000).

Ridges with slow spreading rates have a well-defined (1.5–3 km deep) symmetrical axial rift valley.
In contrast, the fastest spreading ridges have subdued topography more reminiscent of Hawaiian vol-
canoes, with a small summit ridge or graben (Macdonald, 1982). Well-developed axial valleys may
drop to depths below that of the surrounding ocean floor. Hydrothermal activity is associated with
ridges producing extremely hot springs that may form columnar structures known as chimneys.

Ocean ridges are broken into segments by transverse fractures (transform faults) which displace the
ridges by tens, or even hundreds, of kilometres (Figure 2.1). These transform faults are sub-vertical
and may produce fault scarps that exceed 500 m in height (Collette, 1986). Complex stress patterns
are associated with the transform faults and transpressional and transtensional zones are common.
Such stresses help to produce landforms analogous to those seen along continental strike-slip faults
and include pressure ridges, pull-apart basins and shutter ridges.

The coincidence of the Icelandic hotspot with the mid-Atlantic ridge, that helped produce Iceland,
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provides an opportunity to examine some of the geologic aspects of oceanic ridges above sea level.
However, the evolution of the ocean ridge at this location clearly differs from true oceanic ridges. This
is because, for much of its history, it evolved by the successive subaerial and subglacial eruptions and
a considerable portion of its uplift history and rifting is related to the hotspot (Gudmundsson, 2000).

As a consequence of the spreading, oceanic ridges are geologically young. Even with the slowest
spreading rates, the rocks that comprise them are rarely more than a few tens of millions of years old.
Nevertheless, they are among some of the world’s most impressive geomorphic and tectonic fea-
tures.

7 Conclusions
The above descriptions of the global mountain systems help illustrate their complex history, structure
and morphology. Strong contrasts exist between global mountain systems that develop along mid-
oceanic ridges, continental–continental collision zones and oceanic–oceanic/continental convergence
zones. Furthermore, there is considerable variability within a single mountain system along any one
plate boundary setting. This is really well illustrated along the Circum-Pacific and Alpine–Himalayan–
Tibetan orogenic systems. Despite this, global mountain systems share a number of similar character-
istics, both in their evolutionary path and the resultant forms. These are summarized in Figure 2.2(A)
and Tables 2.1 and 2.2.

The evolution of individual mountain ranges may be in excess of hundreds of millions of years.
Moreover, most Cenozoic mountain belts began their evolution long before the onset of the
Cenozoic. Most orogenic belts grow outwards from a central core and may be diachronous along
their lengths. Furthermore, uplift is not simple. It may propagate through a mountain system as the
orogen evolves. In addition, as mountains grow in height, the denudation increases as a consequence
of steeper slopes, increased river power and more prevalent mass movement, and possibly as a result
of glaciation. High denudation rates may, in turn, contribute to uplift as a result of denudational
unloading. The transfer of sediment to foreland regions may also contribute to uplift because of
crustal flexuring associated with basin subsidence.

The growth of mountain ranges may also affect local, regional and even global climatic conditions.
This, in turn, affects the rates and magnitudes of Earth surface processes that help shape the evolving
orogen. This complex interaction between tectonic processes, climate and geomorphology needs
quantifying to fully understand the links and interactions, and hence the evolution of global mountain
systems. Fortunately, new analytical and computational methods and techniques are beginning to be
applied to help explore and examine orogenic systems. Furthermore, much can be learned by apply-
ing space–time substitutions and by comparing ancient and modern mountain belts using tectonic,
geomorphic and palaeoclimatological techniques. This is useful in helping to provide a fuller picture of
the evolution of mountain belts and an understanding of their dynamics. It is encouraging that the
study of orogenesis is becoming increasingly multidisciplinary, allowing for a better understanding of
ancient and modern mountain systems. Such knowledge is also essential for sustainable development
and hazard mitigation in mountain regions, especially as these regions become more populated,
exploited and utilized by the world’s growing population (cf. Hewitt, this volume).
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