Geomorphology of anomalously high glaciated mountains at the northwestern end of Tibet: Muztag Ata and Kongur Shan

Yeong Bae Seong, Lewis A. Owen, Chaolu Yi, Robert C. Finkel, Lindsay Schoenbohm

ABSTRACT

Muztag Ata and Kongur Shan massifs represent a significant area of anomalously high topography at the northwestern end of the Tibetan Plateau, rising to >7500 m above sea-level (asl) from the plateau that has an average elevation of ~3500 m asl. These massifs provide an excellent opportunity to test geomorphic concepts, such as the glacial buzz-saw model. Using remote sensing, digital elevation modeling, field mapping and terrestrial cosmogenic nuclide (TCN) methods, the massifs were examined to determine the relative importance of tectonics and geomorphic processes in shaping the regional landscape and to provide a framework for testing geomorphic models. The gneiss domes that underlie the peaks are the result of the landscape across the Cascade Range are linked to the distribution frequencies of elevation (3600–4100 m) and the style of glaciation has changed over time from expanded ice caps to piedmont glaciers to valley and cirque glaciers. This possibly reflects a change in climate and/or topographic constraints as the massifs grew and became incised. The topography and glaciers in the region vary across the massifs divided by a broadly N–S trending high ridge and watershed. The western portion, situated upwind (the stoss slopes) of the mid-latitude westerlies, that bring moisture to the region, has gentle high topography and small valley glaciers. In contrast, on the eastern leeward slopes, gradients are higher and long debris-covered valley glaciers are present. The hypsometry of the region indicate two peaks in the distribution frequency of elevation (3600–4100 m and 4400–4800 m asl). These two elevation zones are consistent in space with the former equilibrium-line altitudes during the Karasu (oldest), Olimde and Subaxh (youngest) glacial stages and suggest that glacier erosion (most effective at the ELA) has helped control topography. This observation supports the glacial buzz-saw hypothesis, which argues that glaciers exert a threshold on tectonic uplift and ultimately climate dominates.

Keywords: Geomorphology; Northwestern Tibet; Quaternary; Terrestrial cosmogenic nuclides; Erosion rate; Topography

1. Introduction

Over the past decades, areas of significant anomalous topography, such as regions of the Himalaya (Molnar and England, 1990; Brozovich et al., 1997), Alaska (Meigs and Sauber, 2000; Spotila et al., 2004), the Andes (Montgomery et al., 2001), New Zealand (Koons, 1994), Cascade Range (Porter, 1989; Mitchell and Montgomery, 2006) and Sierra Nevada (Brocklehurst and Whipple, 2002, 2004) have attracted much attention to the role of glaciers in shaping the topography. Porter (1989) hypothesized that the erosional patterns of the landscape across the Cascade Range are linked to the distribution of the equilibrium-line altitudes (ELAs) and, thus, the efficacy of erosional processes must vary as a function of variations in glacier activity as forced by climate oscillation. Brozovich et al. (1997) suggested that the development of topography around Nanga Parbat is independent of the rate of tectonic uplift and is correlated with the focus of glacial and periglacial processes. This implies that glaciers exert a threshold on tectonic uplift and ultimately climate dominates.
landscape evolution. Montgomery et al. (2001) found that the
topography of the southern Andes was primarily controlled by varia-
tions in precipitation and the degree of glaciation. Spotila et al.
(2004) concentrated on the role of glacier as buzz-saw on the
mountain building processes. They tested the hypothesis that
glaciers rapidly erode topography that is above the equilibrium
line altitude (ELA) and they place an upper altitudinal limit on how
high mountains may be uplifted. This glacial buzz-saw model, as it
has become known, has major implications for understanding the
coupling between climate and topography in orogens. This hypothe-
sis, however, has yet to be adequately tested because it is particu-
larly challenging to distinguish, spatially and temporally, the closely
interwoven effects of tectonics and glacial erosion.

At the northwestern end of the Tibetan Plateau, two high massifs,
Muztag Ata and Kongur Shan, rise from the plateau that has an
average elevation of ~3500 m asl to 7546 and 7719 m asl, respectively.
Both massifs are ~1500 m higher than any of the neighboring peaks,
and they represent an area of significant anomalously high topo-
graphy (Figs. 1, 2, and 3; Schoenbohm et al., 2005). These massifs
provide an opportunity to more readily isolate endogenic and
exogenic processes, spatially and temporally, to help compare the
impact of glaciers on landscape evolution. To begin to resolve the
relative importance of endogenic and exogenic processes in the
Muztag Ata and Kongur Shan massifs and to provide a framework for
future testing of the glacial buzz-saw model in the region, we describe
the geomorphology of the massifs. We identify the dominant land-
forms and Earth surface processes that operate in the region. The
relatively recent development of terrestrial cosmogenic nuclides
(TCNs) methods to date landforms and to estimate rates of erosion
allows quantification of landscape evolution (Brown et al., 1995;
Granger et al., 1996; Clapp et al., 2000, 2001; Bierman and Caffee,
2001; Schaller et al., 2001; Matmon et al., 2003). Using these methods,
we determine TCN concentrations in fluvial sediments and bedrock
samples to help provide an outline of the recent geologic history of the
massifs and to present the first estimates of the rates of Quaternary
erosion. These are used to help construct a framework to determine
the nature and dynamics of Quaternary landscape evolution in this
region of anomalous topography.

2. Study area

Muztag Ata and Kongur Shan are situated in the Pamir–western
Himalaya syntax that lies at the western end of the Indo-Asian
collision zone, at the northwestern end of the Tibetan Plateau
(Robinson et al., 2004; Figs. 1 and 2). These are bounded to the
north by the Main Pamir Thrust and to the south by Karakoram
Fault. The Kongur detachment traverses the region and is a major
extensional fault related to the exhumation of the Muztag Ata and
Kongur Shan gneiss domes (Fig. 1B; Arnaud et al., 1993; Brunel et al.,
1994; Robinson et al., 2004; Robinson, 2005). Both domes are in
the footwall of Kongur detachment, which has experienced rapid
exhumation since 2 Ma (Arnaud et al., 1993). The region is
seismically active and extensive surface ruptures and fault scarps
provide visible evidence testifying to recent large earthquakes. The
best examples of fault scarp are north of Muztag Ata where fresh
surface ruptures trend westward through the Koqukalag glacier.
Other examples of fault scarpes are present on the south-west side of
Muztag Ata, where multiple strike–slip fault scarpes trend southeast
and cut across alluvial fans. These were probably the result of the
1885 Taghman earthquake (Magnitude is 7.5; Liu, 1993; Fort and
Puelvast, 1995).

Climatologically, the Muztag Ata–Kongur Shan region is situated at
the intersection of Indian summer monsoon and mid-latitude
westerlies. At Bulun Kol (Fig. 2D, 38°44′ N, 75°02′ E, 3310 m asl)
the average annual temperature is 0.7 °C and the mean annual precipita-
tion is 127 mm (during 1956 to 1968). The highest precipitation occurs
between April and May as a result of the penetration of the mid-
latitude westerlies into the region (Miehe et al., 2001). At Muztag Ata
(Fig. 1; 38°42′ N, 75°01′ E, 5910 m asl), the precipitation supplied to the
glacier accumulation zone during the summer is ~30% of total annual
amount (300 mm/yr at 5910 m asl). Most of precipitation is supplied by
mid-latitude westerlies that bring moisture from the Mediterranean,
Black Sea, and Caspian Sea (Aizen and Aizen, 1997; Barry and Chorley,
2003), and reach a maximum in spring (March to May; Fig. 2F).
Wake et al. (1994) found that the annual maximum concentrations of
particles in snow occurs once per year and represent the influx of dust
during spring dust storms at the time of the peak precipitation

![Fig. 1. Tectonic map of the western Tibet (A; modified from Robinson et al., 2004; STDS — South Tibetan Detachment, MCT — Main Central Thrust) and geologic map of Muztag Ata and Kongur Shan. (B; modified from Robinson, 2005).](image-url)
supplied by mid-latitude westerlies. The lack of marine salts in snow at Muztag Ata, which would originate from moisture transported northward from the Arabian Sea by the Indian summer monsoon, supports the view that the mid-latitude westerlies provide the main source for present-day precipitation (Aizen et al., 2001).

Numerous authors have suggested that glaciers in this region are likely to be more sensitive to change in precipitation than temperature changes (Derbyshire, 1981; Shi, 2002; Owen et al., 2005). This characteristic may extend back beyond the last glacial cycle. In addition, the rapid exhumation that the region experienced over the last 2 Ma (Arnaud et al., 1993) probably changed the elevation and, therefore, the amount of precipitation supplied to and across this region. This in turn would have affected erosion on and around the massifs throughout the Quaternary.

Fig. 2. The topography of the Tibetan Plateau (A) and the study area — Muztag Ata and Kongur Shan (B). Three dimensional view of study area showing the topography of the Muztag Ata–Kongur Shan (C). Kongur detachment fault runs from southeast to northwest. The inset (D) shows temperature (dotted curve) and precipitation (solid curve) of Bulun Kol, one of the villages located in the study region. Two knick points in the longitudinal profile of Kongxuwar River (Fig. 15) are marked as smaller boxes. The locations of rock glaciers in Fig. 13 are shown as bigger boxes.
Impressive landforms, present within the valleys and intermontane basins of Muztag Ata and Kongur Shan, include scree cones, debris flow fans, moraines, glaciofluvial outwash terraces, alluvial fans and floodplains. Many of these landforms have been intensely eroded by fluvial processes, and the surfaces have been modified by debris flows and other slope processes.

The region is extensively glaciated; >60% of the land area is glaciated or is covered with glacial sediments (Fig. 4). Glacial geologic evidence shows that Muztag Ata and Kongur Shan have experienced at least three major glaciations and at least 10 smaller glacial advances (Seong et al., 2007; Table 1). The best evidence for these glaciations is found in the Kartamak and Olimde valleys. Seong et al. (2007) assigned these deposits to three glacial stages. The oldest and most extensive glaciation, the Karasu glacial stage, was characterized by highly degraded and denuded till benches containing scattered surface boulders that were deposited by an expanded ice cap. The second oldest glaciation, the Subaxh glacial stage, was of piedmont type of glacier. This produced hummocky moraines that comprise large boulders, many of which are intensely weathered. The most recent glaciation, the Olimde Glaciation, was a series of valley glaciations that incised deeply into the former glacial surfaces to leave multiple sets of sharp crested, lateral-frontal moraines.

Seong et al. (2007) hypothesized that the change in style of glaciers in Muztag Ata and Kongur Shan might be caused by a significant reduction of moisture flux to the region. This possibly reflects a change in regional climatic forcing that might be the result of the progressive surface uplift of the Himalayan ranges on the south and/or the Pamir and the Karakoram to the west, which progressively restricted the supply of moisture by the Indian summer monsoon and the westerlies after they uplifted.

The region is dominated by two vegetation zones — alpine meadow and alpine tundra. The alpine meadow zone consists mainly of short grasses near lakes and ponds, and alpine tundra, dominated by moss and lichen, on the snow-free surfaces. Heavy summer grazing in the meadow zone has resulted in the vegetation which superficially appears more like a dry steppe biome.

3. Methods

We used 1:100,000 scale topographic maps of this region (Lanzhou Institute of Glaciology and Geocryology, 1994) help to locate study...
areas. No detailed topographic maps are available and, therefore, detailed base maps were constructed with the aid of a hand held global positioning system (GPS) and satellite images, which included Enhanced Thematic Mapper Plus (ETM+: p150r33 and p150r34, respectively) and Advanced Spaceborne Thermal Emission and Reflection (ASTER) images (scene #: AST_L1A.003:2003030305 for Kongur Shan and AST_L1A.003:2003030307 for Muztag Ata). ASTER images, with 15 m horizontal resolution, have stereo sub-images for the construction of Digital Elevation Models (DEM). The constructed DEM was used to help calculate present and past equilibrium line altitudes (ELA), and to calculate a basin-averaged production rate for cosmogenic samples. Simplified versions of these geomorphic maps

Fig. 4. Equilibrium line altitudes (ELAs) for the present and the last three glacial stages (see Fig. 2 for location). To calculate the former ELAs, only an accumulation area ratio of 0.67 was used for ease and for comparison with other regions.
are shown in Figs. 5 and 6. The area of landform types within both mountains was calculated from these maps and the DEMs (Fig. 7).

3.1. Digital Elevation Model (DEM)

A DEM provides topographic information and enables the modeling of surface forms. DEMs also are an important tool for the analysis of glaciers and glaciated terrains (Duncan et al., 1998; Bishop et al., 2001; Kääb et al., 2002). We, therefore, utilized ASTER data, which provides 14 bands of data at three resolutions, to derive a DEM. We used simultaneous stereo images of Visible and Near-Infrared (VNIR) nadir (3N) and backward (3B) to generate DEMs for this study. Scenes captured in September and October 2000 (cloud cover 5%) were used to generate absolute DEMs. The Geomatica 8.2 package from PCI Geomatics was used for the DEM extraction. An automated image-matching procedure was used to generate the DEM through a comparison of the respective gray values of these images with the help of the 1:100,000 scale topographic map. Thirty-five and thirty-two ground control points (GCPs), respectively, for each scene were collected and used to calculate the altitude. In addition, as many as 20 well distinguished locations (e.g. bridges, peaks, villages and roads) were employed as tie points (TPs) for better matching of two stereo images (3N and 3B). The resultant absolute DEM has a horizontal resolution of 30 m. Small holes because of cloud-cover were replaced using corrected-SRTM (Shuttle Radar Topography Mission) values. Finally, the two scenes covering the research area were stitched together using the same software that was used to generate the DEMs.

3.2. Equilibrium line altitude (ELA)

Comparisons between former and present equilibrium-line altitudes (ELAs) have yielded valuable information on climatic gradients and the magnitude and extent of climate change in the mountain areas (Ohmura et al., 1992; Benn and Lehmkuhl, 2000; Benn et al., 2005; Owen and Benn, 2005). ELAs were, therefore, determined to help quantify past and present glacial conditions in the Muztag Ata-Kongur Shan region. The geometric calculations for ELA reconstruction were made using the ASTER DEM (resolution 30 m) and the SRTM imagery (resolution 90 m). Glacial landforms were identified using ASTER and ETM+ satellite images. For modern glaciers, steady-state ELAs should ideally be based on observations of glacier mass balance over several years. Because of the lack of mass balance data, however, other multiple methods were used, which include the change of the shape of the convex direction of contour lines across glaciers on topographic maps, the hypsometric curve, a toe to headwall altitude ratio of 0.5 (THAR), the maximum elevation of lateral moraines (MELM), accumulation area ratios of 0.44 and 0.67 (AAR) and a balance ratio of 2.0 (BR).

To calculate the former ELA, only an accumulation area ratio (AAR) of 0.8 was used. This was chosen to be comparable with published results for other regions (cf. Owen and Benn, 2005).

3.3. Terrestrial cosmogenic nuclide (TCN)

Two kinds of samples were collected to help determine the rates of erosion on bedrock and the massifs. Three bedrock samples (ME-15, ME-19, and ME-19-1) were taken from the top 5 cm surface of bedrock knobs within the central valley. No evidence exists for erosion by glaciers. In addition, 17 samples of sand-sized sediments were taken from active stream beds.

All samples were prepared in the geochronology laboratories at the University of Cincinnati. First, the samples were crushed and sieved. Quartz was then separated from the 250–500 μm size fraction using the methods of Kohl & Nishiizumi (1992). After addition of 10Be carrier, Be was separated and purified by ion exchange chromatography and precipitated at pH > 7. The hydroxides were oxidized by ignition in quartz crucibles. BeO was mixed with Nb metal and loaded onto targets for the determination of the 10Be/9Be ratio by accelerator mass spectrometry at the Center for Accelerator Mass Spectrometry in the Lawrence Livermore National Laboratory. Isotope ratios were compared to ICN Pharmaceutical, Incorporated 10Be standards prepared by K. Nishiizumi (Nishiizumi et al., in press) and using a 10Be half-life of 1.5 × 106 yr. The measured isotope ratios were converted to TCN concentrations in quartz using the total 10Be in the samples and the sample weights. TCN 10Be concentrations were then converted to steady-state erosion rate using a sea level high latitude (SLHL) 10Be production rate of 4.98 atom per gram of quartz per year (Lal, 1991; Stone, 2000). Scaling factors were applied to compensate for altitude-dependent effect in calculating cosmic ray exposure ages (Stone, 1999). The error range for the converted rate of erosion is shown as one standard deviation (e.g. 10 m Ma⁻¹ ± 1 σ).

4. Topography

The topography of the Muztag Ata-Kongur region can be divided into three zones (Fig. 3). The DEM shows that more than 80% of a land area lies between 3300 to 6000 m asl, which represents only 30% of the total relative relief (Fig. 3C), whereas the upper and lower components comprise only a small fraction of the surface area. The lower zone, below 3300 m asl, is coincident with most of the fluvial zone, and consists of the gorges and the over deepened valley floors of the rivers. The third zone lies at the highest altitudes and consists of the tallest ridges and peaks above 6000 m. The middle zone

Table 1

Summary of past glaciation around Muztag Ata and Kongur Shan (after Seong et al., 2007)

<table>
<thead>
<tr>
<th>Glaciation Period</th>
<th>Type of Glaciation</th>
<th>Valley</th>
<th>Likely prevailing moisture source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olinde Glacial</td>
<td>Lateglacial and</td>
<td>Valley</td>
<td>Mid-latitude westerlies</td>
</tr>
<tr>
<td></td>
<td>Holocene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subaxh Glacial</td>
<td>Last glacial</td>
<td>Piedmont</td>
<td>Indian summer monsoon and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mid-latitude westerlies (?).</td>
</tr>
<tr>
<td>Karasu Glacial</td>
<td>Penultimate</td>
<td>Ice cap</td>
<td>Indian summer monsoon (?).</td>
</tr>
<tr>
<td></td>
<td>glacial</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5. Geomorphic map of Kengxuwar river valley to the west of Kongur Shan.
between 3300 m and 6000 m asl contains most of the mountain ridges and the glaciated surfaces. The two sectors with the highest frequencies in the histogram of elevation distribution for the total area are between 4400 and 4800 m asl and between 3500 and 4100 m asl (Fig. 3C). These altitude zones are coincident with the locations of the most extensive glacial deposits produced by the former glaciations. Two strikingly flat surfaces are present within the middle zone at the southwestern sector of Muztag Ata (Fig. 3C). These are areas where the deposits from a former piedmont glacier and rock avalanches are present.

5. Landforms

5.1. Glaciers and glacial landforms

Little previous work has been undertaken on the glaciers of the Muztag Ata–Kongur Shan region (Skrine, 1925; Fort and Peulvast, 1995; Ono et al., 1997) although recent studies have been conducted on similar glaciers in the Tadjik Pamir to the west (Zech et al., 2005). Most of the present-day glaciers are of high activity type (Andrews, 1975) with high altitude source areas and steep gradients. These

Fig. 6. Geomorphological map of Muztag Ata (see Fig. 5 for the legend and Fig. 2 for location). The locations of the bedrock samples for rates of erosion are shown in the center of the figure.
glaciers are fed by direct snowfall and snow avalanching from the steep slopes. In many glaciers, the ablation areas are separated from source areas by steep ice falls or avalanche tracks. As a result, the snouts and ablation zones of many glacier are mantled by extensive and thick (>1 m) covers of angular debris containing boulders that exceed many meters in diameter (Fig. 8). Concentrations of sub-angular and edge-rounded clasts also occur on some glacier surfaces. These are probably the result of bands of subglacially transported debris that have been elevated to the surface of the ice. The amount of debris transported through subglacial process, however, has yet to be quantified.

Thick-debris covered glaciers are present on the east side of both massifs. The debris on the glacier greatly reduces ablation of underlying ice, and in some cases has resulted in the isolation of debris-covered ice masses from more rapidly-melting clean ice up-valley. In Himalayan environments, thick debris cover reduces sediment transfer by the glacier through a reduction in glacier velocity and ultimately can result in the formation of a rock glacier (Owen and England, 1998; Shroder et al., 2000). Ablation in debris-covered areas is focused on locations where bare ice is exposed, particularly in areas where debris has slumped and exposed bare ice. This is common around moulins and crevasses. Ablation proceeds by backwasting of ice cliffs and in some cases, produces chains of temporary thaw lakes on the glacier surface (Fig. 9A). The ultimate depositional product of this process is a drape of hummocky moraine usually between 5 and 10 m thick (Fig. 9B).

In contrast, many of the smaller glaciers devoid of debris are most common on the western slopes of Muztag Ata. The ablation zones of these glaciers comprise impressive ice pinnacles and supraglacial channels down which shallow supraglacial water flows (Fig. 10). Supraglacial streams, however, are spotted and intermittent and, thus, sublimation is likely important for the ablation of many of these glaciers.

Impressive sets of latero-frontal moraines occur down valley of the margins of most glaciers (Fig. 11). The tills have crude internal bedding that dips away from the former glacier margins. This reflects successive mass movements (particularly slides and flows) from the former glacier surfaces, in combination with intermittent glacio-fluvial reworking. A section in till on the west of Muztag Ata provides an example of the sedimentology produced by this process (Fig. 12).

The form and sedimentology of many moraines are similar to those of the Pasu-type glacial landform association described by Owen and Derbyshire (1989) in the Karakoram Mountains, although thick-debris covered glaciers on the eastern sides of both massifs are more similar to Ghulkin-type glaciers (Figs. 11 and 12). The Kartamak glacier (Fig. 10) typifies the glaciers in the Muztag Ata–Kongur region. It has small hummocky moraines and parallel ridges comprising a terminal moraine. Thin (<3 m thick) subglacial lodgement tills are present and form on the sides of bedrock knolls, or roche moutonnées. The relative low gradient and topography of the forelands of the glaciers are probably responsible for controlling the formation of Pasu-type. Ghulkin-type glacier landform associations, however, are also present (Fig. 11). Of note are the Uzuntal and Tangi glaciers, which have well-developed latero-frontal moraines surrounding the snouts similar to Ghulkin-type glacier landform associations. The Uzuntal Glacier (Fig. 11B) has a thick frontal moraine ~15 m high and with ~30° slopes, while the Tangi Glacier (on the right side in Fig. 11A) has a
-60 m high lateral moraine. Its terminal moraine formed ~2000 years ago (Seong et al., 2007). Because of extensive ablation, the right portion of the frontal moraine of Uzuntal glacier is mantled by supraglacial debris and has become a rock glaciers. Unlike the typical Ghulkin-type glaciers, these examples have not developed ice-contact fans because of limited glacio-fluvial action. Seong et al. (2007) noted that the extent of glaciation has decreased with time, from ice caps to piedmont glaciers to valley and cirque glaciers. Likewise, the dominant type of glacial landform has changed with time from Ghulkin-type to Pasu-type landform associations. The glacial landforms produced during the penultimate glaciation are similar to Ghulkin-type landform associations, characterized by thick ice-contact fans. In contrast, landforms produced during the Last Glacial and the Holocene are more similar to the Pasu-type glacial landform associations, typified by chaotic hummocky moraines and small terminal moraines ridges.

5.2. Rock glaciers

Glaciers at the western end of the Himalayan–Tibetan orogen have highly variable debris-loads with varying efficiencies of sediment transfer from the accumulation zones to the termini (Owen and Derbyshire, 1989; Bishop et al., 1995). Many of these glaciers have debris concentrations that are so high that they are on the verge of becoming rock glaciers. Owen and England (1998) described examples of such glaciers, which had become rock glaciers in the Karakoram Mountains of northern Pakistan.

In the Muztag Ata–Kongur Shan region, active and relict rock glaciers occur in many valleys in association with the contemporary glaciers. Active forms are particularly abundant on west-facing slopes of both massifs, where they descend to 4000 m asl. These are complex and in places override older fossilized rock glaciers and debris flow fans (Figs. 13A and 14A). The successive development of these rock glaciers

Fig. 9. Glacier landform in the Muztag Ata–Kongur Shan region. (A) View looking east of thaw lakes developed on Karayaylak glacier by surface ablation and backwasting. (B) View looking east of hummocky moraine. The peak in the left background is Muztag–Ata dome at 7715 m.
Fig. 10. View of the terminus of less debris-covered glacier. The person on the snout provides a scale.

Fig. 11. Chulkin-type of glaciers. (A) The Uzuntal glacier with its thick latero-frontal moraine is located to the left and Tangi glacier with a thick long latero-frontal moraine (right) and (B) view of Uzuntal glaciers. The frontal moraine rises ~15 m high.
results in a complex assemblage of lobes, which define areas of differential movement. Scree cones and slopes provide additional sediment input into many of these rock glaciers, which descend as a complex assemblage of lobes and shear zones and reflect differential movement of debris lobes. The surface of the rock glaciers is commonly stepped with a number of lateral ridges, which display compressive folds in the lower reaches, as well as lateral shears along the margins where boulders are vertically oriented. The lobe fronts (Figs. 13B and 14B) form slopes up to 30 m high, with angles up to 50°. These are subject to frequent collapse by mass movement processes, such as debris flows, avalanching and rock sliding, which result in rapid advance of rock glaciers and transport of sediment. The rock glaciers shown in Fig. 13 originate along the snout of thinning, debris mantled glaciers.

Protalus rock glaciers (Fig. 14C) are also present in Muztag Ata, but development is restricted to altitudes of between 3500 and 4000 m asl on south-facing slopes. They occur on slopes with angles between 15 and 20°, and are restricted to surfaces that have unconsolidated slope deposits. These are characterized by multiple arrays of lobate ridges that have a relief of between 0.5 and 1.0 m high. Owen and England (1998) described similar forms in the Karakoram Mountains and Himalaya to the south of Muztag Ata and Kongur Shan.

5.3. Rivers

The rivers in this region are dominated by glacier meltwater, although snow melt and direct precipitation also contributes to the hydrology. As such, the Kengxuwar River, a trunk river in this region, is characterized by large diurnal and seasonal variations in discharge. Most of precipitation is supplied from March to May as snow, which does not melt until the summer. Thus, the stream discharge of tributary rivers on the west slope of Muztag Ata is small except during the summer ablation season when meltwaters from snow patches and glaciers drain into the rivers.

The Kengxuwar River is the main stream (with a Strahler stream order (1952) of 4 derived from a 1:100,000 scale map) that drains the Muztag Ata–Kongur Shan massifs. Its tributary channels, draining glaciers to the east, connect to the Kengxuwar River as it skirts along the eastern margin of Muztag Ata and Kongur Shan and then along the northern margin of Kongur Shan, ultimately flowing northeast through the high mountains and into the Tarim Basin. The river channels are dominantly braided, comprising cobbly and pebbly bars and swales, which are modified seasonally because of the high variability of discharge.

The longitudinal profile of Kengxuwar River, from its origin at the Kartamak glacier on the west-facing slope of Muztag Ata toward the Tarim Basin, is shown in Fig. 15. Two knickpoints are apparent. The first occurs at the gorge running from the moraine-dammed lake (Kara Kol) through hummocky moraine while the other is present just beyond the junction of Gez River and Kengxuwar River, in which the river crosses the Kongur detachment fault.

5.4. Lakes

The largest lake in the region, Kara Kol, is over 3 km long and occupies a bowl-shaped basin that is blocked by hummocky moraines that formed during the early Holocene (Seong et al., 2007). Smaller lakes occur on glaciers, for example, a small lake is present on the debris-mantled Karayaylak glacier (Fig. 9A). Structurally controlled lakes are also present including the large, shallow lake at Bulun Kol (Fig. 4) that formed as a result of subsidence of the hangingwall along the Kongur detachment fault (Fig. 2C).
5.5. Alluvial and outwash fans

Alluvial and outwash fans are present throughout the lowest altitudinal zone. The alluvial and outwash fans are typically steep (5°–10°) and radiate from the glaciers, from eroded moraines and from incised terraces. The fans comprise meter thick beds that dip sub-parallel to the surface of the fans composed of cobbles and pebbles and are occasionally interbedded with pebbly sands.

The alluvial fans in the lower valley of the Karagarum glacier (Fig. 16) are an excellent example of such landforms. The source valley has a distinctive morphology, comprising a steep (15°–20°) upper erosional slope that contains narrow gullies cut into a moraine ramp and a deep gullied channel down which sediment is transferred. Boulder clusters are present within the main channel and silt to pebble size material is common along the channel floors. The present channel has shifted to the south, compared with the axis of the fan. The lower depositional zone of the fan is characterized by its gentle (5°–7°) slopes and planar surfaces. The surface of the fan can be differentiated into different sub-areas on the basis of weathering and rock varnish development. The deposits on the fan comprise decimeter beds of matrix-supported cobbles and pebbles. The beds dip sub-parallel to the surface of the fan.

5.6. Terraces

The terraces throughout the region comprise dominantly glacial, fluvial/glaciofluvial and lacustrine sediments. The best developed and exposed terraces are present along the Kengxuwar River (Figs. 17 and 18). These comprise fluvial/glaciofluvial sediments (LFA-1) that are overlain by lacustrine sand and silt (LFA-2) or are capped by glacial sediments (LFA-3). The fluvial/glaciofluvial sediments comprise decimeter and meter beds of poorly sorted sands and gravels, which are occasionally imbricated. The glacial sediments are massive matrix-supported diamicts that contain boulders and cobbles. The overlying
lacustrine sediments comprise light brown planar bedded silts and fine sands. Seong et al. (2007) dated one of these glacial terraces to ~50 ka using by TCN surface exposure dating.

5.7. Landslides

Deposits from mass movements are common throughout the region and are particularly prevalent in the middle and upper altitudinal zones. These include rock and debris falls, debris flow and snow avalanche deposits. Long-runout landslides are also present throughout the region. Many of these may have been initiated by earthquakes. The Karakulun landslide, for example, was initiated by the Taghman earthquake (Fig. 19B). The most impressive long-runout landslide is present at Kokoser (Fig. 20), a 10 km wide, lobate deposit that slopes from the main fault scarp of the Kongur normal fault. The surface of the landslide deposit is a chaotic assembly of debris arranged in longitudinal ridges and groves that slightly diverge from the mountain front to form a fan-like pattern (Fig. 19B). The margin of the landslide deposit is steep (>30°) and high (100 m). The most distal margin is banked against the eastern slopes of the opposite side of the valley. Sections through the termini of the Kokoser landslide deposit reveal a massive diamict containing angular clasts that reach several hundred-cubic-meters in size, which are supported in a matrix of silt and mud. Fort and Peulvast (1995) interpreted this deposit as an avalanche-debris flow. They considered its kettle-like surficial morphology as indicative of mass movement processes with debris incorporating rock and ice. Although its causal mechanism is not known, it is possible that an earthquake initiated the failure.

6. Erosion rates

The concentration of in-situ produced TCNs in sediment within a catchment area is inversely related to the rate of erosion of the
catchment (Brown et al., 1995; Bierman and Steig, 1996; Granger et al., 1996). As a result, the TCN concentration in sediment will be lower in rapidly eroded catchments. Calculating rates of erosion for catchment areas that have been glaciated, however, is challenging because of the likelihood of considerable storage of sediment with moraines and/or terraces, together with sporadic transfer of sediment over the history of glaciation. Fig. 16. View looking northeast from the road (38°38.379′ N, 74°58.003′ E) at the paraglacial fan developed down the snout of the Karagurum Glacier (Fig. 4).

Fig. 17. Glacial, fluvioglacial, and lacustrine sediments comprising the terraces along Kengxuwar River valley. Lithofacies association 1 (LFA-1) is glacio-fluvial gravel deposit, LFA-2 is lacustrine deposit consisting fine sand and silt, LFA-3 is boulder dominant till deposit, and LFA-4 is angular gravel and cobble dominant debris flow deposit.
of the catchment. Furthermore, young, glaciated catchments likely provide overestimates of long-term erosion as substantial bedrock is removed during glacial times, which is rapidly transferred downstream and ultimately out of the catchment and essentially dilutes the TCN concentrations in sediment. Despite these caveats, TCN concentrations provide a proxy for examining regional validity and provide estimate for rates of erosion within glaciated catchments.

To calculate rates of erosion and sedimentation for selected catchments from TCN concentrations, catchment area-integrated nuclide production rates were calculated by combining catchment hypsometry (determined from the DEMs) and using the altitude production-rate function of Lal (1991) in 100 m bins (Fig. 21). Catchment-wide rates of erosion (Table 2) were calculated using the methods of Bierman and Steig (1996) and applying the following equation:

$$\varepsilon = \frac{\Lambda}{\rho} \left(N - \lambda \right)$$

where N is measured activity (atoms 10Be g$^{-1}$ quartz), P is basin integrated rate of production (atoms 10Be g$^{-1}$ quartz yr$^{-1}$), ε is the rate of erosion (cm yr$^{-1}$), ρ is density (g cm$^{-3}$), and Λ is attenuation depth (150 g cm$^{-2}$). Approximately 70% of the area in the catchments that were examined for erosion studies had slopes <20°. Moreover <5% of the area had slopes greater than 35°. Thus, consideration of slope effects on TCN production is small (less than a few percent of the total rates of production).

The 10Be TCN concentrations in sediments and bedrocks, and calculated rates of erosion are shown in Table 2 and Fig. 21, respectively. The rate of erosion determined from the sediments collected from catchment areas that contain only Strahler (1952) 1st and 2nd order streams (as determined from the 1:100,000 scale map), range from 540 to 1400 m/Ma (ME-1 through ME-5, ME-9 and ME-10). These samples were collected along streams which incise Holocene and Late-glacial moraines. In contrast, rates of erosion for catchments that contain higher order streams range from 22 to 103 m/Ma (ME-6, ME-8, ME-11 through ME-14, ME-16, ME-18 and ME-20). These samples were collected from regions blanketed by older (pre-Late-glacial) moraines. Rates of bedrock erosion (ME-15, ME-19 and ME-19-1) are lower than the catchment area wide rates and range from 11 to 23 m/Ma (Fig. 22). The bedrock surfaces might have been covered by snow or regolith which reduced the TCN production. No evidence exists, however, that the bedrock surface was significantly covered. The TCN surface exposure ages of the bedrock surfaces is 30-50 ka. The sampled bedrock knobs may have been glaciated during the Karasu glacial stage (penultimate) and early Subaxh (MIS 3 or 4) glacial stage. Considerable variability occurs in the rates of erosion between adjacent samples determined for the 1st and 2nd order streams. For example, samples ME-2 through ME-5 have rates that range from 610 to 1402 m/Ma. The variation among adjacent samples for higher order streams is significantly less. Samples ME-12, ME-14, ME-17 and ME-18, for example, range from 67 to 103 m/Ma. Higher variability associated with the lower order streams likely reflects less effective mixing of catchment wide TCNs than that for the higher order streams.

7. Discussion

7.1. Geomorphic zones and glacier change

The landscape evolution of the Muztag Ata–Kongur Shan region has been strongly influenced by tectonics and fluctuating climate,
which in turn have controlled the magnitude and frequency of geomorphic processes within the region. Rapid tectonic uplift and exhumation together with intense glacial and fluvial incision have produced steep, long slopes. As a result, a clear altitudinal distribution of landforms occurs throughout this region. These can be broadly assigned to four zones (Fig. 23C). The relative importance of the geomorphic processes within the region can be largely assessed by comparing the aerial extent of landforms on Kongur Shan and Muztag Ata (Figs. 7 and 24).

The glacial stratigraphy and history of the region is described by Seong et al. (2007). They showed that the oldest glaciation, the Karasu glacial stage, was most extensive. During this glacial event, an expanded ice cap developed and filled the Kengxuwar valley to produce a thick and extensive succession of hummocky moraines. The following glaciation, the Subaxh glacial stage, however, resulted in the sediments in the Kengxuwar valley being intensely eroded and ultimately overlain by glaciofluvial sediments. Glaciers continued to oscillate throughout the Holocene, the most extensive of these advance occurred at ~8 ka (Seong et al., 2007). This advance blocked the Kengxuwar River and left a moraine-dammed lake (Kara Kol in Fig. 4). Substantial quantities of sediments were transported out of the mountains via the Kengxuwar River system during these times, and produced deeply incised glacial valleys and transported sediment to the Tarim Basin. The present depositional landforms, such as bars, and low terraces in the channel, therefore, probably serve as relatively short-lived storage.

The changing style of glaciation over the last few glacial cycles is intriguing. Each successive glaciation has decreased in extent; from mountain ice caps to piedmont glaciers to valley glaciers. The decrease in extent of glaciation through time can be also recognized in the surrounding mountains of the Tibetan Plateau (Owen et al., 2006) and other areas, including Tasmania, the Sierra Nevada, Alaska, Peruvian Andes, Patagonia, and Chilean Lake District (Denton et al., 1999; Barrows et al., 2002; Smith et al., 2002; Kaufman et al., 2004; Singer et al., 2004). Thus, glaciers in high mountains might have decreased in extent over time, because of compensating growth of the Northern Hemisphere ice sheets over the last several glacial cycles. The decreasing extent of glaciation in this particular setting, however, possibly also reflects a change in regional climatic forcing that resulted from surface uplift of the Karakoram and Himalayan ranges to the south and the Pamir to the west, which progressively restricted the supply of moisture by the monsoon and mid-latitude westerlies (Seong et al., 2007). Alternatively, the progressive uplift of the massif and its feedback on deep incision of its valley might have had a topographic control on the style of glaciation, and resulted in glaciers that had less extensive catchments and were confined to deep valleys.

Reconstruction of former glaciers allows changes in ELAs to be determined for the region. The present and former ELAs are shown in
The thick debris covered glaciers have the lowest ELAs in the region and are as much as 1500 m lower in elevation than the cleaner cirque glaciers. As suggested by Ono et al. (1997), the ELAs on the west (Tibetan) side are up to 1000 m higher than the east (Tarim Basin) side. If the thick, long debris covered glaciers on the east side are excluded from the calculation, however, the present ELA on the west side of the range are actually on average 30 m lower than the east side, suggesting an orographic precipitation effect from westerly sources. The lower ELA on the east side of the range when debris mantled glaciers are considered likely results from the difference in topography and its consequence of supraglacial debris cover. The eastern side with its steep slope is more susceptible to snow avalanching, resulting in the increase in supraglacial debris mantle and, thus, mass balance onto the glacier.

During the Karasu glacial stage, the expansion of the extent of glacier ice caused all the tributary glaciers above 3400 m asl to coalesce. An average ELA depression (ΔELA) of 1975 m has been calculated for this glacial stage on the west side of the range. During the Subaxh glacial stage, the average ΔELA was 1350 m on the west. During Olimde glacial stage, the glaciers were likely supplied moisture from mid-latitude westerlies and advanced multiple times in phase with north Atlantic climate deterioration (Seong et al., 2007). The average ΔELAs were <600 m, except for a glacial advance at ~8 ka (ΔELA of >1300 m), which was almost as great as the ΔELA during the Subaxh glacial stage.

Among the well dated glacial successions in the Himalayan–Tibetan orogen, the upper Hunza Valley in the Karakoram Mountains and the Khumbu Himal are the only regions were a ΔELA for the global LGM has been adequately determined (Owen and Benn, 2005). These regions show that the ELA descended by <300 m during the global last glacial maximum. Unfortunately, no moraines exist in the Muztag Ata and Kongur Shan area that have been dated to the global LGM. The ΔELAs shortly after LGM in this region, however, were between 300 and 400 m. This is comparable and consistent with values in the Hunza Valley and Khumbu Himal.

7.2. Topographic asymmetry and glacial buzz-saw model

The marked E–W precipitation gradient across the region likely influences the distribution of topography, glaciers and landforms. The western sides of the massifs, for example, are situated on the wetter upwind side of the mid-latitude westerlies, where westerly
Fig. 21. Cosmogenic sampling sites for basin-wide rates of erosion and bedrock (ME-15, ME-19, and ME1-19-1). Hypsometric curve of each sampling site for calculation of basin-wide rate of cosmogenic production in Table 3.
precipitation resulted in small, clean valley glaciers during multiple Holocene advances. In contrast, the eastern slopes, are on the drier lee sides of the mid-latitude westernies, contain clean cirque glaciers with a higher average ELA than the valley glaciers on the west side of the divide. A few large debris-covered glaciers, however, are also present with extremely steep headwalls. These lower the average ELA of the east side of the divide significantly. Snow avalanching and rock falls from the high peaks to the lee sides of the massifs likely increased the mass balance and debris supply to produce the long debris-mantled glaciers.

The asymmetry of the massifs, which is well illustrated by the DEMs (Fig. 24), is likely the consequence of the faulting and uplift. Because exhumation is oblique, a dip-slope, exhumed fault surface is exposed on the west (Fig. 13). It may be dif

Table 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>Latitude (±0.001 N)</th>
<th>Longitude (±0.001 E)</th>
<th>Altitude (m asl)</th>
<th>¹⁰Be (10⁶ atoms/g)</th>
<th>Erosion rate (m/yr)</th>
<th>Drainage Area (km²)</th>
<th>¹⁰Be production Rate (atoms g⁻¹ a⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME-1</td>
<td>38.291</td>
<td>75.008</td>
<td>4209</td>
<td>0.09±0.01</td>
<td>540±36</td>
<td>6.02</td>
<td>80.71</td>
</tr>
<tr>
<td>ME-2</td>
<td>38.285</td>
<td>75.012</td>
<td>4293</td>
<td>0.06±0.01</td>
<td>910±34</td>
<td>5.31</td>
<td>84.13</td>
</tr>
<tr>
<td>ME-3</td>
<td>38.286</td>
<td>75.012</td>
<td>4287</td>
<td>0.08±0.01</td>
<td>610±45</td>
<td>5.89</td>
<td>83.87</td>
</tr>
<tr>
<td>ME-4</td>
<td>38.287</td>
<td>75.009</td>
<td>4232</td>
<td>0.04±0.01</td>
<td>1402±54</td>
<td>6.05</td>
<td>81.60</td>
</tr>
<tr>
<td>ME-5</td>
<td>38.287</td>
<td>75.004</td>
<td>4181</td>
<td>0.07±0.01</td>
<td>726±44</td>
<td>6.27</td>
<td>79.53</td>
</tr>
<tr>
<td>ME-6</td>
<td>38.315</td>
<td>74.977</td>
<td>3852</td>
<td>1.85±0.04</td>
<td>22±10</td>
<td>17±1.3</td>
<td>67.11</td>
</tr>
<tr>
<td>ME-8</td>
<td>38.302</td>
<td>74.965</td>
<td>3878</td>
<td>0.48±0.02</td>
<td>86±13</td>
<td>33±1.2</td>
<td>68.03</td>
</tr>
<tr>
<td>ME-9</td>
<td>38.304</td>
<td>74.963</td>
<td>3855</td>
<td>0.08±0.01</td>
<td>530±23</td>
<td>25.58</td>
<td>67.21</td>
</tr>
<tr>
<td>ME-10</td>
<td>38.321</td>
<td>74.986</td>
<td>3858</td>
<td>0.07±0.01</td>
<td>589±24</td>
<td>12.82</td>
<td>67.32</td>
</tr>
<tr>
<td>ME-11</td>
<td>38.360</td>
<td>75.005</td>
<td>3742</td>
<td>1.46±0.04</td>
<td>25±10</td>
<td>116.97</td>
<td>63.29</td>
</tr>
<tr>
<td>ME-12</td>
<td>38.321</td>
<td>74.939</td>
<td>3807</td>
<td>0.59±0.02</td>
<td>67±22</td>
<td>209.03</td>
<td>65.62</td>
</tr>
<tr>
<td>ME-13</td>
<td>38.336</td>
<td>74.989</td>
<td>3828</td>
<td>2.27±0.07</td>
<td>18±6</td>
<td>19.83</td>
<td>66.26</td>
</tr>
<tr>
<td>ME-14</td>
<td>38.354</td>
<td>74.973</td>
<td>3749</td>
<td>0.37±0.02</td>
<td>103±25</td>
<td>306.53</td>
<td>63.53</td>
</tr>
<tr>
<td>ME-15</td>
<td>38.336</td>
<td>74.983</td>
<td>3896</td>
<td>3.66±0.09</td>
<td>15±1.2</td>
<td>18.27</td>
<td>66.26</td>
</tr>
<tr>
<td>ME-16</td>
<td>38.357</td>
<td>74.983</td>
<td>3753</td>
<td>0.42±0.01</td>
<td>92±13</td>
<td>86.45</td>
<td>63.66</td>
</tr>
<tr>
<td>ME-17</td>
<td>38.383</td>
<td>75.008</td>
<td>3699</td>
<td>0.48±0.02</td>
<td>78±11</td>
<td>427.54</td>
<td>61.84</td>
</tr>
<tr>
<td>ME-18</td>
<td>38.420</td>
<td>75.050</td>
<td>3651</td>
<td>0.39±0.01</td>
<td>94±13</td>
<td>535.20</td>
<td>60.25</td>
</tr>
<tr>
<td>ME-19</td>
<td>38.354</td>
<td>74.962</td>
<td>3910</td>
<td>1.72±0.05</td>
<td>23±1.6</td>
<td>11±0.9</td>
<td>60.25</td>
</tr>
<tr>
<td>ME-20</td>
<td>38.460</td>
<td>75.053</td>
<td>3663</td>
<td>0.48±0.02</td>
<td>76±6</td>
<td>550.67</td>
<td>60.65</td>
</tr>
</tbody>
</table>

Fig. 22. The comparison of rates of erosion among different time scales. Each box delimit ranges of measurements and corresponding time scales, for cosmogenic nuclides, which average over thousands of years or ~60 cm of erosion, and for thermochronometry (⁴⁰Ar)/³⁹Ar ages and K-feldspar diffusion modeling) (Arnaud et al., 1993), which average over tens of millions of years or 3.6 km.

7.3. Paraglaciation

The geomorphic form and sedimentology of the fans and terraces in this region are typical of those described by Barnard et al. (2003, 2004a,b, 2006) that formed by resedimentation during deglaciation, and are, thus, described as paraglacial in origin. The abundance of these paraglacial landforms suggest that much of the landscape development in this region likely occurred during short periods of time as the landscape responded to oscillating glaciers. During the Holocene, as many as eight glacial advances occurred and it is likely
that glaciers fluctuated considerably during the Pleistocene. Upon each glacial oscillation, the hydrologic system and associated processes, such as fluvial erosion and sedimentation and mass movement, would have been dramatically influenced. This would have resulted in oscillating sediment transfer and landform development.

As a combination of landscape readjustment during deglaciation and the high relief in the Muztag Ata–Kongur Shan region, the very susceptible unconsolidated glacigenic sediments are intensely reworked by non-glacial processes, resulting in rapid degradation of glacial landforms and release of large quantities of sediment into the fluvial system. The evolution of the valley reflects the dynamic relationship between glacial, slope and fluvial processes within and among the three altitudinal zones. A variety of slope processes contribute to debris transfer across this region, including, the falling, rolling, and sliding of clasts from the overlying slopes, debris flow and snow avalanching. Sediment is fed directly into the stream channels, occupied by steep and fast-flowing streams. Silt to cobble size sediment is quickly transferred along these streams, whereas bouldery deposits are commonly temporarily stored along the channels to be later removed during higher discharges during deglaciation or extreme events such as glacial lake outburst floods. Extreme paraglacial events can be identified by the thick bouldery diamicts and within channels and fan deposits (Fig. 16).

Most slopes show major modification by mass movement initiated by paraglacial processes. This is similar to neighboring mountains of the Karakoram and Himalaya, where landsliding is common and involves a variety and combination of processes, including falls, toppling, avalanching, sliding, and flows (Shroder et al., 1999; Barnard et al., 2001). As a consequence, paraglacial mass movements are common and are major slope forming processes (Fig. 7). The widespread distribution of alluvial fans in association with glaciated valleys is notable and suggests that mass movement is probably intensified following deglaciation, as large areas of unconsolidated debris are exposed on steep slopes. The suggestion is supported by higher rates of erosion of the samples collected proximal to younger moraines than ones within older moraines (see discussion below and Table 3).

The thick terraces on the outwash plains may also be related to the fluctuations in discharge of meltwater because of the large seasonal and diurnal temperature changes. Glaciofluvial or fluvial terraces are produced by allocyclic processes and climate changes throughout the Quaternary. They are often subsidiary, however, to terraces formed by other processes, such as morainic and lacustrine terraces.

The general assumption of very high sediment loads in mountain systems is valid for the region but sediment transfer is an episodic process associated with seasonal cycles and the dynamics of highly active hillslope processes. Around the region, the abundance of paraglacial landforms might be evidence for the episodic nature of sediment transfer. The importance of paraglaciation has been highlighted in other regions of the Himalayan–Tibetan orogen and elsewhere in the world (Ballantyne, 2002; Barnard et al., 2003, 2004a,b, 2006) and our study supports these views.
7.4. Drainage basin and basin-wide rates of erosion

The plan-view drainage system is largely controlled by tectonics. Radial drainage in the headwaters from the two domes flows into the main Kengxuar River that parallels the Kongur detachment fault before cutting antecedent across the northern slopes of Kongur Shan and ultimately into the Tarim Basin. The two knick points that are identified, one at the moraine-dammed lake (Kara Kol) through hummocky moraine and the other just beyond the junction of Gez River and Kengxuar River, are probably related to damming and tectonic uplift/subsidence, respectively (Whipple et al., 1999; Snyder et al., 2000). The first knickpoint (a in Fig. 15), at Kara Kol, likely relates to a base level change that resulted from moraine damming and the following incision. The knick point and gorge section at the Gez and Kengxuar river confluence (b in Fig. 15) might be related to rapid incision that resulted from the increase in combined discharge and bedrock uplift along the Kongur detachment fault.

Although calculating rates of erosion for glaciated catchments is challenging, our data shows that the rate of erosion for samples collected proximal to young moraines, with 1st and 2nd order streams, is in the order of 540–1400 m/Ma. This is likely, however, to be an overestimate of the long-term rate of erosion, as substantial bedrock was removed during the Holocene glaciations of these valleys, essentially diluting the TCN concentrations. The higher order streams that were not, or were less glaciated during the Holocene provide lower estimates of the rates of erosion (22–100 m/Ma). It probably represent more effective basin-wide mixing of TCNs and are more likely representative of the average TCN concentration of adjacent, older moraines.

The low values (11–23 m/Ma) for bedrock weathering places a lower limit on denudation for the hanging wall. Despite the uncertainties inherent in using TCN concentrations for glaciated terrains, the data allow a broad estimate of the denudation of the region. For example, the difference in rate of erosion between 1st–2nd order streams and higher order streams demonstrates that sediment is not transferred rapidly downstream for the glaciated catchments. This suggests that the streams draining the catchment on the western slope of Muztag Ata are not very efficient in transferring sediment, at least on the timescale of 10^3–10^5 yr. Furthermore, the low rates of erosion determined for hanging wall bedrock in this study (11–23 m/Ma) and boulders on the oldest moraine (2–4 m/Ma) recalculated from Seong et al. (2007), show that weathering is not as important as glacial and fluvial erosion in this region. Furthermore, the lower values for the erosion of boulders, compared to bedrock, illustrate how resistant individual glacial boulders can be to weathering processes. This provides confidence when using boulders on moraines to define the ages of moraines and the timing of glaciation.

Many previous studies (Brown et al., 1995; Granger et al., 1996; Clapp et al., 2000, 2001; Bierman and Caffee, 2001; Schaller et al., 2001; Matmon et al., 2003) are based on a steady state erosion model for calculation of the basin-wide rates of erosion from TCN concentrations of riverine sediments. The other recent studies (Niemi et al., 2005; Stock et al., 2006) suggest that the contribution of TCN from different parts of the basin, however, is not equal, which is especially greatly influenced by landslides. A simulation study by Niemi et al. (2005) argued that basin-wide rates of erosion deduced from TCN concentration of sediments, has a decreasing tendency with an increasing ratio of landsliding to steady-state bedrock weathering. This might affect the study area, in which paraglacial and earthquake-related landsliding are frequent. Thus, we cannot rule out the possibility of underestimation of the true rate of erosion of the basin studied, resulting from the contribution of TCN of sediments newly exposed to cosmic rays by deep-seated landsliding.

Our rates of erosion contrast with the long-term rate of denudation determined from thermochronometric data (Arnaud et al., 1993), which is four to five times greater than the short-term rates of erosion determined from 10Be TCN method. This is to be expected because to maintain high topography, uplift must exceed denudation. The variation in rates of erosion with the different time scales implies that Muztag Ata and Kongur Shan have not been in dynamic equilibrium.

Fig. 24. The area-altitude distribution (hypsometry) and histograms across the high ridges of Muztag Ata. (A) is for west (windward) side and (B) for east (lee) side. The boundary of both sides is shown Fig. 23A.
The present equilibrium line altitudes (ELAs) and ELA depressions for Muztag Ata and Kongur Shan

Table 3

<table>
<thead>
<tr>
<th>Present ELAs (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contour</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Olimde-1</td>
</tr>
<tr>
<td>Subax</td>
</tr>
<tr>
<td>Kmatolja</td>
</tr>
<tr>
<td>Kartamak</td>
</tr>
<tr>
<td>Rijek</td>
</tr>
<tr>
<td>Uzantal</td>
</tr>
<tr>
<td>Tangi</td>
</tr>
<tr>
<td>Kotakir</td>
</tr>
<tr>
<td>Konguriju</td>
</tr>
<tr>
<td>Jangmanjar</td>
</tr>
<tr>
<td>Karayaylak</td>
</tr>
<tr>
<td>Uzuntal</td>
</tr>
<tr>
<td>Qimgan</td>
</tr>
<tr>
<td>BeiQimgan</td>
</tr>
<tr>
<td>Tugraalkuluxi</td>
</tr>
</tbody>
</table>

THAR is toe to headwall ratio, MELM for maximum elevation of lateral moraine, AAR for accumulation area ratio, and BR is balance ratio.

a Toe to headwall ratio.
b Maximum elevation of lateral moraine.
c Accumulation area ratio.
d Balance ratio.
e The values from AAR of 0.67.
f The Last Glacial cycle.
g Penultimate Glacial cycle.

since the onset of rapid uplift at ~2 Ma. Furthermore, focused glacial erosion on the footwall and/or the sediment burden on the hanging wall because of retarded sediment redistribution, might enhance rock uplift of the footwall. The 10Be TCN concentrations show that the rate of erosion from the basin constituting most of the hanging wall of the Kongur normal fault is five to ten times lower than the Himalayan area with similar glacier and tectonic setting (Vance et al., 2003). This discrepancy might result from inefficient sediment transfer by fluvial systems because of the low precipitation within the region. The lower value of the basin-wide rates of erosion, however, is in good agreement with dryland regions devoid of glaciers, such as the Negev Desert in Israel (Clapp et al., 2000).

In summary, clear spatial and temporal controls exist on landform distribution and formation in the Muztag Ata and Kongur Shan massifs. These are controlled primarily by tectonics, which in turn influences local climate, distribution of glaciers and their resultant controls on erosion and sediment transfer. Climatic oscillations result in fluctuating glaciers, which also influence other Earth surface processes. Major landscape changes likely result from readjustments during periods of deglaciation and during large seismic events. Landscape changes in this region are probably sporadic and occur very rapidly, mainly during deglaciation. The role of fluvial/glacio-fluvial sedimentation during paraglacial modification has still to be fully assessed, but clearly the erosion of moraines and resedimentation on outwash plains in association with moraines and alluvial fans are dramatic and important. Although the uplift history has yet to be fully quantified in detail by thermochronology and tectonic geomorphology, the strong spatial variability in topography and landform distribution suggests that a glacial buzz-saw model could explain the gross geomorphology of the massifs.

8. Conclusions

The geomorphic and tectonic evolution of the Muztag Ata and Kongur Shan region is the result of complex interactions between endogenetic and exogenic processes, resulting in rapid Quaternary uplift and concentrated incision. Tectonic uplift may have been enhanced by denudational unloading by glacial incision, but this has yet to be defined. Glaciation dominates the landform development, producing extensive successions of moraines and inducing paraglacial modification of the landscape by erosion and resedimentation. Glaciers have oscillated considerably throughout the Late Quaternary, with as many as eight advances during the Holocene alone. The style of glaciation has also changed in this region which resulted in glacial landforms typical of debris mantled glaciers to landforms typical of small, clean glaciers. Earthquake-induced catastrophic events, such as long-runout landslides, are important in landform formation in this region.

The topography and glacier forms in the Muztag Ata and Kongur Shan massifs vary across a broadly N–S trending high ridge and watershed. The western portion, situated on the windward slope has gentle high topography and small valley glaciers, while on the eastern, leeward slopes, gradients are steeper and long debris-covered valley glaciers are present. The hypsometry of the region showed two peaks in the distribution frequency of elevation at 3600–4100 m and 4400–4800 m asl (Fig. 24). The two frequent elevation zones are consistent...
with the former equilibrium line altitudes during the Oligocene and Suba Mus glacial stages. This helps support the buzz-saw hypothesis that glaciers determine hypsometry by means of rapid erosion at the ELA.

Quaternary glaciation throughout Tibet and the Himalaya defined by cosmogenic radionuclide surface exposure dating. Quaternary Science Reviews 24, 1391–1411.

